Workshop on Homotopy Type Theory/ Univalent Foundations

July 5-6, 2020, Paris, France

Note: date changed from original announcement.

Co-located with FSCD 2020, Paris, France


Homotopy Type Theory is a young area of logic, combining ideas from several established fields: the use of dependent type theory as a foundation for mathematics, inspired by ideas and tools from abstract homotopy theory. Univalent Foundations are foundations of mathematics based on the homotopical interpretation of type theory.

The goal of this workshop is to bring together researchers interested in all aspects of Homotopy Type Theory/Univalent Foundations: from the study of syntax and semantics of type theory to practical formalization in proof assistants based on univalent type theory.


We solicit talk proposals. Submissions should consist of a title and an abstract of no more than 4 pages in pdf format, via EasyChair.

Considering the broad background of the expected audience, we encourage authors to include information of pedagogical value in their abstract, such as motivation and context of their work.

Invited speakers



Program committee


Previous HoTT/UF Workshops