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Working in homotopy type theory as described in the book [6], we prove the Hurewicz
theorem: for n ≥ 1 and X a pointed, (n − 1)-connected type, there is a natural
isomorphism

πn(X)ab ∼= Hn(X), (1)

where on the left-hand-side we take the abelianization (which only matters when n = 1).
Below we explain the ingredients that go into this, state a more general form of the
Hurewicz theorem, and describe the results we obtain along the way. Before doing so,
we give some motivation for the interest in this result.

In topology, homotopy groups are in a certain sense the strongest invariants of a
topological space, and so their computation is an important tool when trying to classify
spaces up to homotopy. In homotopy type theory, homotopy groups play a fundamental
role in that they capture information about iterated identity types. Unfortunately, even
in classical topology, the computation of homotopy groups is a notoriously difficult prob-
lem. Nevertheless, topologists have come up with a variety of powerful tools for attacking
this problem, and one of the most basic tools is the Hurewicz theorem. In most cases, it
is much easier to compute homology groups than homotopy groups, and so one can use
the isomorphism from right to left to compute certain homotopy groups. Moreover, one
can apply the theorem even when X is not (n − 1)-connected using the following tech-
nique. Let X〈n−1〉 denote the fibre of the truncation map X →

∥∥X∥∥
n−1

over the image

of the basepoint. Then X〈n − 1〉 is (n − 1)-connected and πn(X〈n − 1〉) ∼= πn(X), so
πn(X)ab ∼= Hn(X〈n− 1〉). The Serre spectral sequence [4] can often be used to compute
the required homology group.

We now give a more detailed account of our work, starting with the hypothesis for the
theorem: a type X is (n − 1)-connected if its (n− 1)-truncation is contractible.

Moving on to the left-hand-side, given a pointed type X and n ≥ 1, the homotopy
group πn(X) is defined to be the set-truncation

∥∥Ωn(X)
∥∥
0

of the iterated loop space.
This carries a natural group structure, which is abelian when n ≥ 2. (Throughout, when
we use the word group, we mean a set (0-truncated type) with a binary operation satis-
fying the usual properties.) An abelianization of a group G is a group homomorphism
G→ Gab to an abelian group which is initial among such homomorphisms. It is straight-
forward to show that abelianizations exist, although the most direct method is somewhat
tedious. We give a more efficient construction as a higher inductive type with one point
constructor η : G→ Gab, one 1-path constructor asserting that η(a · (b · c)) = η(a · (c · b))
for a, b, c : G, and one 2-path constructor enforcing that Gab is a set. It is immediate
that the type of abelianizations of G is contractible and that the identity map serves as
the abelianization of an abelian group.
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Now we explain the homology groups that appear on the right-hand-side of the
Hurewicz isomorphism. First, recall that given two pointed types X and Y , the smash
product X ∧ Y is defined to be the higher inductive type with constructors:

• sm : X × Y → X ∧ Y .
• auxl : X ∧ Y .
• auxr : X ∧ Y .
• gluel :

∏
(y:Y ) sm(x0, y) = auxl.

• gluer :
∏

(x:X) sm(x, y0) = auxr.

Next, given an abelian group A and m ≥ 1, [5] constructed an Eilenberg-Mac Lane
space K(A,m), which is an m-truncated, (m−1)-connected, pointed type with a canon-
ical isomorphism πm(K(A,m)) ∼= A. Using that Ω(K(A,m + 1)) ' K(A,m), one can
construct for any pointed type X and any n ≥ 1 a sequential diagram

πn+1(X ∧K(A, 1)) −→ πn+2(X ∧K(A, 2)) −→ πn+3(X ∧K(A, 3)) −→ · · · (2)

The nth homology group Hn(X;A) of X with coefficients in A is defined to be the
colimit of this sequence. We write Hn(X) for Hn(X;Z), where Z is the group of integers.
We have now explained everything that appears in the isomorphism (1).

To state the more general version of the Hurewicz theorem, we need to introduce one
more ingredient that appears on the left-hand-side. Given abelian groups A,B : Ab,
a tensor product of A and B consists of an abelian group T together with a map
t : A→Grp B →Grp T such that, for any abelian group C, the map

t∗ : (T →Grp C) −→ (A→Grp B →Grp C)

given by composition with t is an equivalence. When such a map t exists, we write
A⊗B ∼= T .

The generalized Hurewicz theorem says that for X a pointed, (n − 1)-connected
type and A an abelian group, there is a natural isomorphism

φ : πn(X)ab ⊗A ∼= Hn(X;A).

In order to define the natural map φ, we define and study a more general natural map

smashing : (X → r Y → rZ) −→ (πn(X)→Grp πm(Y )→Grp πn+m(Z))

for any pointed types X, Y and Z and any n,m ≥ 1. While this map lands in group
homomorphisms between (0-truncated) groups, in order to construct it, we pass through
magmas. A magma is a type M with a binary operation · : M ×M → M , with no
conditions. As a technical trick which simplifies the formalization, we work with weak
magma morphisms. A weak magma morphism from a magma M to a magma N is a
map f : M → N which merely has the property that it respects the operations. This is
sufficient for our purposes, because when M and N are groups, it reproduces the notion
of group homomorphism. All loop spaces are magmas under path concatenation, and
many natural maps involving loop spaces are weak magma morphisms. By working with
magmas, we can factor the map smashing into simpler pieces, and still land in group
homomorphisms at the end, without keeping track of higher coherences.

As a key step towards the Hurewicz theorem, we prove that if X is a pointed, (n− 1)-
connected type (n ≥ 1) and Y is a pointed, (m−1)-connected type (m ≥ 1), then X ∧Y
is (n+m−1)-connected and πn+m(X∧Y ) is the tensor product of πn(X)ab and πm(Y )ab

in a natural way. The tensor product structure comes from the map smashing applied
to the natural map X → r Y → r X ∧ Y . Taking Y to be K(A,m) in this result shows
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that the groups appearing in the sequential diagram (2) are tensor products of πn(X)
and A. The proof of the Hurewicz theorem follows from showing that the induced maps
are isomorphisms.

In order to work with natural transformations, we use the framework of wild 1-
categories, and make use of the Yoneda lemma in this setting. We also rely on work
of [2] and [3].

Formalization of these results is in progress, using the Coq HoTT library [1].
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