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The classical specification of the real numbers is as the unique complete Archimidean field. Here we
instead explore an axiomatization of ‘interval objects’ by Escardó and Simpson based on midpoint alge-
bras [3]. The completeness axiom is replaced by an iteration property, and the closed interval is specified
by a universal property that gives a recursion principle for real numbers. This axiomatisation supports
constructive mathematics by design, making it attractive to theory of computation, wherein interval objects
can be viewed as abstract data types for real numbers [4]. It is also of particular interest to the HoTT/UF
community; indeed, in the HoTT book it is conjectured that the defined higher-inductive type for Cauchy
reals “probably coincide with the Escardó-Simpson reals”1, a presumption that was proved by Booij re-
cently in his Ph.D. thesis [2]. The HoTT book also recognises another interesting property of these reals:
that they “can be stated in any category with finite products”, allowing for a general notion of interval
objects which often coincide with previous concepts. In particular, it has been shown that in Set [−1, 1] is
an interval object, and in Top [−1, 1] with the expected Euclidean topology is an interval object. We now
give a work-in-progress formulation of this work within univalent type theory.

In this talk, we will outline the concepts and theorems proposed by Escardó and Simpson, and show
how they have been newly formalised in AGDA. Furthermore, we will discuss the formulation of this ax-
iomatisation in the language of univalent type theory – in particular, we characterise equality on interval
objects and related structures by applying a structure identity principle. The formalisation is implemented
within Escardó’s AGDA library TYPETOPOLOGY2, based on univalent type theory. In this abstract, we em-
ploy the type theory, notation and terminology used in the HoTT book.

Bipointed convex bodies. Our interval objects are conceived to represent any line segment – a bounded,
convex subset of the real line. These sets are convex because they contain every point on the line between
its endpoints. In order to define convexity, we use the idea of taking the midpoint between two numbers,
and furthermore that taking such a midpoint can be infinitely iterated [4].

We start with the structure of a midpoint algebra, which is a magma (a type equipped with a binary
operation; Magma :≡

∑
(A:U)(A → A → A)) where the type A is an h-set and the operation (⊕, called the

midpoint operator) is idempotent, commutative and transpositional. These properties correspond to types
Magma→ U , e.g. transpositional(A,⊕) :≡

∏
(a,b,c,d:A)((a⊕ b)⊕ (c⊕ d) = (a⊕ c)⊕ (b⊕ d)). We then add two

further properties to this structure: cancellation and iteration.
The cancellation property says that if a ⊕ c = b ⊕ c then a = b; adding this gives us a cancellative

midpoint algebra. The set Rn is a cancellative midpoint algebra closed under the binary midpoint function
λxy. 12 (x+y); as are various subsets of Rn, such as the rationals. Furthermore, given two rational endpoints,
e.g. −1 and 1, we could use the midpoint function to generate any rational number in [−1, 1] – but we cannot
generate any particular point on the convex line. For this, we require our version of the completeness axiom.

The iteration property states that there is an operator M : AN → A that gives the ‘infinitely iterated’
midpoint of a stream of points of A. Formally, this operator is defined by two sub-properties:

iterative(A,⊕) :≡∑
(M:AN→A)

(( ∏
(a:AN)

M a = head a⊕M(tail a)
)
×
( ∏

(x,a:AN)

( ∏
(i:N)

ai = xi⊕ a(i+ 1)
)
→ head a = Mx

))
.

1Page 538, Notes on Chapter 11 in [6].
2https://www.cs.bham.ac.uk/~mhe/agda-new/Escardo-Simpson-LICS2001.html
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The first sub-property characterises the M operator, while the second gives a computation rule for it with
respect to a second stream which corresponds to the iteration on the first. From these sub-properties, we
can prove the M operator satisfies (i) M(λ − .x) = x, (ii) M(λi.M(λj.xij)) = M(λi.M(λj.xji)) and (iii)
M(λi.xi⊕ yi) = Mx⊕M y.

Adding iteration to a cancellative midpoint algebra gives us the structure we call an abstract convex
body. Every line segment of Rn is an abstract convex body; following this fashion, a closed line segment
corresponds to a bipointed convex body [3]:

Bi-convex-body :≡
∑

((A,⊕):Magma)

((
is-set A× idempotent(A,⊕)× commutative(A,⊕)

× transpositional(A,⊕)× cancellative(A,⊕)× iterative(A,⊕)

)
×A×A

)
.

In our formulation, a closed and bounded line segment – called an interval object – on a given type A is
defined as a bipointed convex body with underlying type A that satisfies the following universal property.

Universal property for interval objects. Given two bipointed convex bodies (A,⊕A, propsA, u, v) and
(B,⊕B , propsB , s, t), a map f : A → B is a midpoint homomorphism if f(x ⊕A y) = f(x) ⊕B f(y). We have
already seen that M is a midpoint homomorphism (further, every midpoint homomorphism is automat-
ically an M homomorphism). The universal property that characterises interval objects states that given
two interval objects there is a unique midpoint homomorphism h : A → B which preserves the bipointed
structure. Therefore, a given bipointed convex body is an interval object if the following type is inhabited:

is-interval-object (A,⊕A, propsA, u, v) :≡∏
((B,⊕B ,propsB ,s,t):Bi-convex-body)

is-singleton
( ∑

(h:A→B)

(
(hu = s)× (hv = t)×

∏
(x,y:A)

(h(x⊕A y) = hx⊕B hy)
))
.

The uniqueness of this map amounts to the requirement that the sigma type is a singleton. Thus, given an
interval object as above, there is a unique map affineA : A→ A→ A→ Awhere affineA(a, b) is defined as the
unique map h of the universal property on the interval objects (A,⊕A, propsA, u, v) and (A,⊕A, propsA, a, b).
This affine map transforms a point x : A on the interval object with endpoints u, v into the relative point
affineA(a, b, x) : A on the interval object with the same underlying convex body, but with endpoints a, b.

Deriving operations and properties from the axioms. We now fix the interval object (I,⊕, props,−1,+1)
where I is an h-set representing the closed and bounded real interval [−1, 1], with −1,+1 : I representing
the endpoints. The term −1⊕+1 : I clearly represents the number 0, and all other numbers in the interval
can be represented by terms of I iteratively generated from these endpoints by ⊕ : I → I → I and M :
IN → I. The universal property gives us the unique map affine(a, b) : I → I → I → I for any a, b, : I,
which transforms a representation of a point in [−1, 1] to a representation of a point in the sub-interval with
endpoints represented by a and b.

The negation operator can be defined as neg(x) :≡ affine(+1,−1, x), which is a midpoint homomorphism
satsifying neg(−1) = +1 and neg(+1) = −1. From the uniqueness of affine and the fact that the composition
of any two midpoint homomorphisms is a midpoint homomorphism, it can be proved that for all x : I,
neg(neg(x)) = x. The multiplication operator is defined as mul(x, y) :≡ affine(neg(x), x, y); commutativity
and associtativity are again formalised using the uniqueness of affine. We can even define (medial) power
series using the M operator. The fact that these operations and properties are derived from the axioms,
rather than axioms themselves, highlights the conciseness of our approach.

Of course, as we are working in a closed and bounded interval, we cannot define addition. However,
by adding a single extra axiom, we can define truncated addition and subtraction, as well as operators for
maximum, minimum and absolute value [4]. This axiom is the assumption of a function double : I → I
which performs a truncated doubling of a term in the interval object. From this, for example, truncated ad-
dition and subtraction can be defined as x+I y = double(x⊕y) and x−I y = double(x⊕neg(y)), respectively.

A note on our type theory. The axiomatisation presented thus far can be implemented within plain
dependent type theory, except that the proof M satisfies property (ii) invokes function extensionality. How-
ever, we use the concepts of univalent mathematics such as h-sets and contractibility throughout. Overleaf,
we introduce the structure identity principle for interval objects, which utilises the univalence axiom.
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Structure identity principle. The structure identity principle is described in the HoTT book as “an
informal principle that expresses that isomorphic structures are identical” [6]. The univalence axiom gives
this principle for general types with no additional structure by stating that all type universes are univalent
(i.e. for all types A,B, the canonical map id-to-equiv A B : (A = B)→ (A ' B) is an equivalence).

is-equivf :≡
(∑

(g:B→A)(
∏

(a:A) g(fa) = a)
)
×
(∑

(h:B→A)(
∏

(b:B) f(hb) = b)
)

A ' B :≡
∑

(f :A→B)(is-equivf)

is-univalent U :≡
∏

(A,B:U)

(
is-equiv (id-to-equiv A B))

)
Thus, univalence characterises equality by equivalence for general types, i.e. (A = B) ' (A ' B). The
structure identity principle characterises equality by a notion of equivalence for types ΣS :≡

∑
(A:U) S

specified by a structure S : U → V . For example, the specification of a Magma is SMagma :≡ A→ A→ A.
There are several structure identity principles in the literature [6] [5] [1]. It is convenient for our purposes

to use [5], which is already implemented within TYPETOPOLOGY3. In this setting, equality is characterised
using a general theorem for a standard notion of structure (SNS). Therefore, for a given structure ΣS, a char-
acterisation of equality is derived immediately by constructing an SNS. An SNS for type universes U ,V,W
is a sigma type consisting of:

• A structure specification S : U → V .

• A map of homomorphisms, ι :
∏

((A,s),(B,t):ΣS)((A ' B)→W).

• A proof the identity equivalence gives a homomorphism ρ :
∏

((A,s):ΣS)(ι (A, s) (A, s) (id-to-equiv A A)).

• A proof that, given A : U and s, t : SA, the canonical map θ : (s = t)→ (ι (A, s) (A, t) (id-to-equiv A A))
defined θ (refl s) :≡ ρ(A, s) is an equivalence.

Given any (S, ι, ρ, θ) : SNS, we define the type of structural equivalences for the type ΣS using ι :

(A, s) '(S,ι,ρ,θ) (B, t) :≡
∑

(f :A→B)

∑
(i:is-equivf)

(ι (A, s)(B, t) i).

The following general theorem can then be applied for any structure with an SNS in order to characterise
equality on that structure by the above notion of equivalence:

characterization-of-= :
∏

((S,ι,ρ,θ):SNS)

∏
(A,B:ΣS)

(
(A = B) ' (A '(S,ι,ρ,θ) B)

)
We apply the above structure identity principle to get a characterisation of equality for midpoint al-

gebras, convex bodies and interval objects relative to a given universe. A bipointed convex body with un-
derlying type A : U is an interval object relative to a given universe V if, given any bipointed convex body
with underlying type B : V , there exists a unique midpoint homomorphism h : A → B that preserves the
bipointed structure. (The universal property of interval objects states that a bipointed convex body is an
interval object if it is an interval object relative to any universe V .)

For interval objects in universe U relative to a given universe V , the structure specification Sint-obj is that of a
bipointed convex body (given on previous page). We then define the map of homomorphisms as expected:
they are those midpoint homomorphisms that preserve the bipointed structure of the two convex bodies:

ιint-obj (A,⊕A, propsA, u, v) (B,⊕B , propsB , s, t) (f, i) :≡
( ∏

(x,y:A)

(f(x⊕A y) = fx⊕B fy)
)
×

(
(fu = s)

×(fv = t)

)
.

Constructing the terms ρint-obj and θint-obj completes the SNS. The general theorem is then applied to achieve
a characterisation of equality on interval objects. Finally, we can show that two interval objects in the same
universe are equivalent by the above definition and, thus, are identical.

We have formalised this characterisation of equality for midpoint algebras, convex bodies and interval
objects in AGDA 4.

3https://www.cs.bham.ac.uk/~mhe/agda-new/UF-SIP.html
4https://www.cs.bham.ac.uk/~mhe/agda-new/UF-SIP-IntervalObject.html
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