Coherence of definitional equalities in type theory
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Hofmann proved in [4] the conservativity of extensional type theory over a variant of intensional
type theory; that is the fact that anything proven or constructed using the additional definitional equal-
ities of extensional type theory can already be proven or constructed in the weaker intensional type the-
ory. We are interested more generally in the matter of the conservativity of the extension of any weak
type theory T, to a stronger type theory T by a family T. of new definitional equalities. Hofmann’s
method can be used to obtain such results for type theories that satisfy the Uniqueness of Identity Proofs
(UIP) principle.

We present new methods that can be employed to prove conservativity results even in the absence
of UIP. The main new tool involved is a type-theoretic definition of higher congruence on models of
type theory, inspired by Brunerie’s type theoretic definition of weak co-groupoid [3]. We plan to use
these results to prove the equivalence of difference variants of HoTT, for example with weakened com-
putation rules for identity types, II-types, etc, or with weak Tarski universes, or with a universe of strict
propositions that is equivalent to the type of propositions.

As an example, the signature of weak identity types consists of the following rules.

A type x: A y: A A type rz: A
Ida = y type refl, 1 1dy x @
A type Tz: A [y:A,p:lda xzy] P(y,p) type A type rz: A
d: P(x,refl,) y: A p:ldazy [y:A,p:lda zy] P(y,p) type d: P(x,refl,)
JPdp: P(y,p) JgPd:\d(JPdrefl,)d

The theory of strong identity types extends the above signature with the following definitional
equalities:

JPdrefl, =d Jg Pd=refl,

The equivalence of the theories of identity types with weak or strong computation rules had been con-
jectured at the TYPES 2017 conference [1].

Equivalences between type theories

We rely on previous work on the homotopy theory of type theories, and in particular on the definitions
of classes of weak equivalences between models of a type theory, and between different type theories.
In [6], Kapulkin and Lumsdaine define classes of weak equivalences, cofibrations and fibrations on the
categories of models of type theories with identity types. They also show that for type theories that
only include identity types, X-types and, optionally, extensional II-types, these classes constitute a left
semi-model structure. In [5], Isaev defines a suitable notion of weak equivalence between type theories,
and prove that type theories with weak unit types are weakly equivalent to type theories with strong
unit types.

A cellular model of T,, is a model that is freely generated by some types and terms. The theories T,,
and T, are weakly equivalent if every cellular model of T,, is weakly equivalent to the model of T, that
is freely generated by the same data. Because every model of T,, has an equivalent cellular model, this
condition implies that every weak model is weakly equivalent to some strong model.

Following [5], we say that the type theory T, is semi-model when the classes of maps defined in [6]
are parts of a left semi-model structure on the category of contextual models of T,,.
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Hofmann’s conservativity theorem
In this setting, Hofmann’s conservativity theorem can be restated as follows:

Theorem. If the theory T, is semi-model and includes the UIP axiom, then T, is weakly equivalent to the
extension of T, by the equality reflection rule.

The proof goes by considering congruences and quotients of models of T,,, and their relationship
with the class of trivial fibrations of the left semi-model structure on Mod,,.

Higher congruences

In the absence of the UIP axiom, we cannot just use ordinary congruences, and need to consider higher
congruences instead. While congruences can be seen as models valued in setoids, higher congruences
should be models valued in co-groupoids. Our definition of higher congruence is inspired by Brunerie’s
type-theoretic definition of weak oo-groupoid [3].

We define an extension Ty, » of T,,. The idea is that a model of T, » valued in sets should be seen as
a model of T,, valued in weak co-groupoids.

Definition (simplified). The type theory T, o is a two-level type theory [2]. The inner layer has the same
structure as T,,. The outer layer has weak identity types and I1-types with arities in the inner layer.

Definition. A higher congruence on a model C of T., is a model C of T, o along with a weak equivalence
1:C—C.

The outer identity types of C encode the higher-dimensional data of the higher congruence. The
presence of II-types is perhaps less expected. They are needed to ensure that the higher congruence
respects all type-theoretic operations, even those that include binders.

Unlike most applications of two-level type theory, the theory T, » does not include UIP as an axiom.
Instead, we say that a model of T,, 3 is acyclic if it satisfies UIP.

We also consider a further type theory T, 2., extending T, 2 by reifying the equations of T, as
elements of the outer identity types.

The following theorem generalizes Hofmann’s conservativity theorem. The functor L., 2 . : Mod,, —
Mod,, 2. is the left adjoint of the forgetful functor R, 2 : Mod, 2 . — Mod,,.

Theorem. If the theory T,, is semi-model and, for every cellular model C of T,, the model Ly, 2 . C of T2 is
acyclic, then T, and T s are weakly equivalent.

Weak normalization

Finally, we need to be able to prove the acyclicity of these higher congruences in the cases that we are
interested in.
As a first approximation, we can prove that acyclicity holds in the absence of added equations.

Theorem. For any cellular model C of T.,, the model L., » C of T, 2 is acyclic.

This theorem can be seen as a rephrasing of the results of Lasson on the canonicity of the opera-
tions definable in Brunerie’s type theory [7]. It relies on the construction of a model that combines a
parametricity translation for the outer layer with the elimination of outer transports in the inner layer.

In presence of equations, the same idea still works, but the parametricity translation for the outer
layer has to be combined instead with a weak normalization proof for the inner layer. This weak nor-
malization proof should simulate the normalization proof of the strong theory T, in a weaker setting.

Thus, heuristically, we can expect a family T, of equations to be coherent whenever the resulting
strong type theory Ts admits a well-behaved normalization procedure.

1We also need to assume either that a conjecture regarding the strictification of weakly stable identity types holds, or that the
semi-model structure satisfies additional stability conditions.
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