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A remarkable consequence of the univalence axiom is the structure identity principle (SIP),
which states that type-theoretic properties of certain mathematical structures are invariant un-
der isomorphism of structures. There are several variations of the SIP formalized in HoTT/UF
[1, 2, 4, 5, 9], which have primarily been applied to algebraic and categorical structures. We
consider applications of the SIP to representation independence, a central problem in the theory
of programming languages: given a program that depends on an abstract data structure, and
two implementations of that data structure, does the program return the same results when
linked against either implementation [7]?

The SIP answers this question in the affirmative whenever the underlying representation
types of the implementations are isomorphic, but this is not the case in standard examples.
For instance, we can implement finite multisets as either lists or association lists, which are not
in bijection but rather only a many-to-many correspondence (e.g., the list [x, x] represents the
same finite multiset as the two association lists [(x, 1), (x, 1)] and [(x, 2)] where the numbers
represent the multiplicity of x). By taking set quotients of these representation types, we can
improve this correspondence to an isomorphism and thereby apply the SIP.

As we are interested in applications to programming, we have formalized our results in a
cubical type theory, specifically Cubical Agda [10], because it has computational formulations
of univalence (hence the SIP) and higher inductive types (hence set quotients). In Cubical
Agda, we have formalized a variation of Martín Escardó’s SIP stated with respect to cubical
path types [5]. This version of the SIP is rather algebraic in its character and thus much closer
to the presentation of Coquand and Danielsson [4], than to the categorical version in the HoTT
Book [9]. Moreover, it is straightforwardly applicable to algebraic and data structures, and
Escardó [5] has already applied it to an impressive number of mathematical structures.

Following Escardó, we formalize structures as functions S : Type ℓ → Type ℓ and the type
of S-structures as

TypeWithStr S = Σ[ X ∈ Type ℓ ] (S X)

Given two S-structures A B : TypeWithStr S, we have a notion ι : StrIso S of which equivalences
between the underlying types fst A ≃ fst B are “S-structure-preserving” isomorphisms, where

StrIso S = (A B : TypeWithStr S) → fst A ≃ fst B → Type ℓ

The type of isomorphisms between A and B is then given by

A ∼= B = Σ[ e ∈ fst A ≃ fst B ] (ι A B e)

A univalent structure is a pair (S, ι) for which isomorphisms e : fst A ≃ fst B of underlying
types preserve structure exactly when the structures snd A and snd B are homotopic over e.

UnivalentStr S ι = {A B : TypeWithStr S} (e : fst A ≃ fst B)
→ (ι A B e) ≃ PathP (λ i → S (ua e i)) (snd A) (snd B)
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Here, PathP is a dependent path type and ua is the function underlying the univalence theorem
in Cubical Agda.

This definition of a univalent structure is equivalent to Escardó’s standard notion of struc-
ture, but interacts better with cubical machinery. Using ≡ for non-dependent path types, we
can then prove the (cubical) SIP, which states that we have a term1

SIP : UnivalentStr S ι → (A B : TypeWithStr S) → (A ∼= B) ≃ (A ≡ B)

Following Escardó, we show that various operations on structures preserve being a UnivalentStr,
such as augmenting a structure with proposition-valued axioms, or taking the product of two
structures. The cubical proofs of these facts are more direct and shorter than the corresponding
ones in HoTT/UF. These two results are what makes Escardó’s SIP (and our cubical version)
so readily applicable. In order to apply the SIP we always have to prove that the structures we
consider are a UnivalentStr, but in Escardó’s setting we only have to prove these facts for the
most elementary structural components from which we build more complex structures.

To illustrate how the SIP can be applied to concrete data structures we focus on finite
multisets. Following Okasaki [8, Fig. 2.7] we define a minimal multiset structure over some
fixed type A as

multiset-structure : Type ℓ → Type ℓ
multiset-structure X = X × (A → X → X) × (A → X → N)

Terms of this signature consist of the empty multiset, an insertion function and a count function
that returns the multiplicity of elements in X. This can easily be adapted and extended with
other operations, such as union and intersection. We can also easily add axioms, such as
requiring all elements to have multiplicity 0 in the empty multiset. However, for simplicity, we
focus on this minimal signature in this abstract.

If A has decidable equality we can define a count function on List A and, together with []
and _::_, obtain an implementation of multiset-structure. A more efficient option would be to
use association lists, represented by List (A × N) and a count function that interprets (a , n)
as n copies of a in the multiset. As discussed above, these representations of multisets are not
isomorphic, but in a many-to-many correspondence. However, we can add path constructors to
refine the types and get two isomorphic HITs2

data FMSet (A : Type ℓ) : Type ℓ where
[] : FMSet A
_::_ : A → FMSet A → FMSet A
comm : ∀ x y xs →

x :: y :: xs ≡ y :: x :: xs
trunc : isSet (FMSet A)

data AList (A : Type ℓ) : Type ℓ where
⟨⟩ : AList A
⟨_,_⟩::_ : A → N → AList A → AList A
per : ∀ a b m n xs →
⟨ a , m ⟩:: ⟨ b , n ⟩:: xs ≡ ⟨ b , n ⟩:: ⟨ a , m ⟩:: xs

agg : ∀ a m n xs →
⟨ a , m ⟩:: ⟨ a , n ⟩:: xs ≡ ⟨ a , m + n ⟩:: xs

del : ∀ a xs → ⟨ a , 0 ⟩:: xs ≡ xs
trunc : isSet (AList A)

The HIT FMSet has already been formalized in Cubical Agda in [3], but AList as well as the
equivalence of the two types is novel. The count functions on lists and association lists extend
so that we get isomorphic multiset structures on these HITs, which by the SIP implies that they

1See https://github.com/agda/cubical/blob/master/Cubical/Foundations/SIP.agda.
2See https://github.com/agda/cubical/tree/master/Cubical/HITs/FiniteMultiset

and https://github.com/agda/cubical/tree/master/Cubical/HITs/AssocList.
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are equal implementations of multiset-structure. However, while adding higher constructors
solved the problem of the types not being isomorphic, a natural question to ask is what the
relationship is between these HITs and the original ordinary data types?

To answer this question, we demonstrate that we can recover these HITs by identifying two
lists (resp., association lists) xs and ys iff they both correspond to a single association list (resp.,
list). That is, we identify two representations of a finite multiset whenever all elements of A
occur with the same multiplicity in each. Because our many-to-many correspondence between
lists and association lists is zigzag-complete [6], we automatically obtain relations R and R′

performing the above identifications, and an isomorphism between the set quotients List A / R
and List (A × N) / R′, on the top of the square below3

List A / R List (A × N) / R′

FMSet A AList A

∼=

∼= ∼=
∼=

The right-most isomorphism is just the composition of the other three. In particular, it follows
that any two elements in AList A can be identified if they have the same count function, a fact
that would be quite hard to prove directly because of the many path constructors in AList.

Using the SIP we hence get paths between all four of the multiset implementations and we
can freely transport proofs and programs between them. This means that no matter which
implementation we choose to work with the other implementations will automatically share the
same operations and properties which ensures representation independence when programming
with finite multisets in Cubical Agda.
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