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Abstract

We present a characterisation of elementary fibrations, i.e. fibrations with equality,
that generalises the one for faithful fibrations, and employ it for a comparison with the
structures used in the semantics of the identity type of Martin-Löf type theory.

Fibrations provide an algebraic framework that underlies the treatment of syntax and se-
mantics of (fragments of) first and higher order logics, as well as of dependent type theories.
The former approach dates back to Lawvere’s hyperdoctrines [6, 7] where, in the spirit of func-
torial semantics, equality is specified requiring left adjoints to certain reindexing functors. On
the other hand, models of dependent type theory that do not collapse the (whole) hierarchy of
identity types do not treat equality as an adjunction. Rather, they often rely on weak factor-
isation systems or related structures. We provide a characterisation of elementary fibrations
that contributes to shed light on the relation between the two approaches to equality. As it
will become clear, the relation is based on a structure which, in type-theoretic terms, can be
understood as a transport structure.

Let K: E // B be a (cloven) fibration, write f∗: EY
// EX for the reindexing functor along

f :X // Y in B . A fibrationK: E // B has finite products if the base B has finite products as
well as each fibre EX , and each reindexing functor preserves products—equivalently, both E and
B have finite products, and K preserves them. We denote products in fibres as A∧B, and write
lists of product projections 〈pri1 , . . . ,prin〉:X1 × · · · ×Xm

// Xi1 × · · · ×Xin in B as pri1,...,in .
Recall from [5] that a fibration with products K: E // B is elementary if, for every pair of
objects Y and X in B , reindexing along the parametrised diagonal pr1,2,2:Y ×X // Y ×X×X
has a left adjoint

E

Y,X : EY×X // EY×X×X , and these satisfy the Frobenius Reciprocity and
the Beck-Chevalley Condition for pullbacks of the form

Y ×X
pr1,2,2

��

f×X
// Z ×X

pr1,2,2

��

Y ×X ×X
f×X×X

// Z ×X ×X.

Example. Let C be a category and denote its arrow category as C2 and the codomain functor
as cod: C2 // C . Let A be a full subcategory of C2 and suppose that, for every f :X // Y in
C , there is a choice of a pullback square for each g:B // Y in A and, further, that A is stable
under pullback. Then the composite

A � � //

cod�A

((
C2

cod
// C

is a fibration where reindexing is given by the chosen pullbacks. If C has finite products then
so does cod�A .
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1. Let M denote the full subcategory of the arrow category C2 on the monos. If C has
pullbacks of monos along any arrow, then cod�M is a (faithful) fibration and the poset
reflection of the fibre MX is the poset of subobjects of X. This fibration is elementary

with

E

Y,X(m): = A
pr1,2,2m−−−−−→ Y ×X ×X.

2. Let (L ,R ) be a weak factorisation system of a category C . If there are pullbacks of arrows
in R along any arrow, then cod�R : R // C is a fibration.

Example 1 is the prototypical example of a faithful fibration. These have a robust theory
in terms of indexed posets, see [9, 8], and the elementary ones can be characterised [1] as those
faithful fibrations with finite products K: E // B that are equipped, for every X in the base,
with an element IX ∈ EX×X which is (i) reflexive, i.e. >X ≤ pr1,1

∗IX , (ii) substitutive, i.e. for
every A ∈ EX , pr1

∗A ∧ IX ≤ pr2
∗A, and (iii) product-stable, i.e. pr1,3

∗IX ∧ pr2,4
∗IY ≤ IX×Y .

With the aim of extending this result to a general fibration K: E // B with finite products,
consider the following structure on an object X in B : (I) an object IX over X×X and an arrow
∂X :>X

// IX over pr1,1:X // X×X, and (II) for every A ∈ EX , an arrow tA: (pr1
∗A)∧IX // A

over pr2:X×X // X. We refer to this structure as a transporter on X. Transporters can be
found in elementary fibrations as well as in those fibrations cod�R from Example 2 arising from
models of Martin-Löf’s identity type. In fact, transporters in these examples enjoy also other
properties: a condition analogous to (iii) above, and the existence of a section tAδA = idA for
tA for each A ∈ EX , where δA:A // (pr1

∗A) ∧ IX is obtained pairing ∂X !A with the obvious
cartesian arrow over pr1,1. We say that transporters satisfying these two additional conditions
are strictly productive . One last ingredient is needed to state the characterisation. Recall
from [10] that an arrow ϕ:A // B in E is locally epic with respect to K if, for every pair
ψ,ψ′:B // B′ such that K(ψ) = K(ψ′), whenever ψϕ = ψ′ϕ it is already ψ = ψ′.

Theorem. A fibration with products K: E // B is elementary if and only if

1. it has strictly productive transporters and,

2. for every X, all arrows in a certain class ΞX are locally epic with respect to K.

The arrows in the class ΞX are obtained from ∂X by suitable reindexing and pairing and
include, in particular, all the δA defined above, for A ∈ EX . The proof of the Theorem builds
on the observation that existence of a left adjoint to reindexing along some f is equivalent
to existence of cocartesian lifts over f , and provides equivalent formulations of the Frobenius
Reciprocity and the Beck-Chevalley Condition in terms of closure conditions for cocartesian
arrows. As we shall illustrate, in an elementary fibration the arrows in ΞX are precisely the
cocartesian arrows over parametrised diagonals pr1,2,2:Y ×X // Y ×X ×X, for Y in B .

The complete statement of our main result lists other equivalent characterisations of an
elementary fibration, which are also convenient intermediate steps in the proof of the Theorem
above. We shall discuss all the concepts needed to state the main result and illustrate them
with several examples. In particular, we shall see when condition 2 holds for a fibration of the
form cod�R from Example 2. This condition fails, for instance, in the fibration cod�R associated
to a (non-trivial) model of Martin-Löf’s identity type.

On the other hand, the weak factorisation system (L ,R ), whose right class provides the
comprehension category of such a model, is often the underlying w.f.s. of an algebraic weak
factorisation system [2, 3]. The richer structure of algebraic weak factorisation systems produces
more structured fibrations. Consider, for instance, the algebraic weak factorisation system
on Cat (and Gpd ) whose underlying weak factorisation system (L ,R ) is the one of acyclic
cofibrations and fibrations from the canonical, or “folk”, model structure on Cat (and Gpd ).
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In this case, the two fibrations cod�R into Cat and Gpd are not elementary. This is not a
surprise, as cod�R : R // Gpd is the fibration underlying the Hofmann–Streicher groupoid
model from [4]. However, using the Theorem we shall prove that the fibration of algebras for
the monad on the right functor R is elementary.
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