Cubical type theory with several universes in
Nuprl

Mark Bickford, Cornell University, Computer Science
May 20, 2020

1 Abstract

In 2018 we formalized in Nuprl a semantics for cubical type theory [I] (without
higher inductive types) that had been developed by Coquand, et. al. [2]. This
formalization shows that cubical type theory indeed had a completely construc-
tive meaning, but it does not give us a user friendly proof assistant for cubical
type theory implemented inside of Nuprl, because it uses a variable-free, higher
order abstract syntax, and because it does not include a verified type-checking
algorithm for cubical type theory.

We have now made a data type for the concrete syntax (with variables) of
cubical type theory, and a definition of truth for the judgments of cubical type
theory expressed in this syntax. Although Nuprl’s types are not the same as the
types of cubical type theory the univalence does not hold in Nuprl, we can still
include all the Nuprl types (in some universe) as discrete cubical types where
all paths are trivial (refl) paths.

We have defined a category of weakly complete enough (WCE) metric spaces
and showed that there is a 7 functor from the category of WCE spaces to the
category of groups, so at least the fundamental group is constructively definable
for WCE spaces. We conjecture that every WCE space X can give rise to a
corresponding cubical type, but we have not yet verified this conjecture. If so,
we would have a way to relate the constructive analysis on metric spaces to the
synthetic methods of homotopy type theory by using univalence to prove that
the WCE types are equal to their synthetic versions.

Years ago, N.G. DeBruijn (who created the AutoMath system) remarked to
Robert Constable that type theory “needs only three universes. Think about it,
and you will see that I am right!”. So, we decided to put three cubical universes
Uy, Us, and Us into our interpretation of the syntax of cubical type theory.
We discovered that while contexts (cubical sets) and cubical types in a context
are both defined as families of Nuprl types, these families can be in different
universes (in particular, the level of the type may be lower than the level of
the context). To handle three universes in our definition of truth, we had to
generalize about 950 lemmas that we had proved previously to allow the levels of
context and type to be instantiated independently. This took about one month,
because some of the proofs in this theory are the longest ever created in Nuprl.

The meaning of expressions of cubical type theory are provisional. They exist
provided that the term is indeed meaningful. We defined a provisional monad
where for ¢ € Provisional(T), allowed(¢) is a proposition, and allowed(t) =

allow(t) € T. The meaning of an expression that should be a cubical type (in
context G) is, provisionally, a triple of a level, a cubical type at that level,
and a uniform composition operator for that cubical type, so it has Nuprl type
Provisional(ctt Type(G)) where

cttType(G) == vl : Ny x T': Cubical Type(G, lvl) x Comp(G, v, T)

The meaning of an expression that should be a cubical term is, provisionally, a
triple of a level, a cubical type at that level, and a cubical term of that cubical
type, so it has Nuprl type type Provisional(cttTerm(G)) where

cttTerm(G) == lwl:Ny x T: CubicalType(G, lvl) x CubicalTerm(G,T)

Since the syntax uses variables, a semantic context X is not merely a cubi-
cal set G. It is a triple (G,vars, f) where G is a cubical set, vars is a list of
variables bound in the context, and f is a function from vars to cttTerm(G).
So f assigns to each bound variable a term meaning. We give an induc-
tive definition of Mng(X;¢) to return Provisional(cttTerm(G)) for terms and
Provisional(cttType(G)) for types, using our Provisional monad and its bind
and return operations.

This gives a semantic definition of the provisos for meaningfulness, but if
we can prove that these provisos are always decidable, then we can extract a
verified type-checking algorithm from that proof. In many cases, the proviso can
be decided by checking a-equality of type expressions, but cubical type theory
must also check that certain equations hold in restricted contexts, and that
certain restrictions imply other restrictions. These restrictions are formulae of
the face lattice so a decision procedure for that theory will be needed as well as
some other bookkeeping. Because we have added all the Nuprl types and Nuprl
terms into the cubical type theory (as discrete types and constant terms), and
type checking in Nuprl is not decidable, we will get decidable type checking for
only a fragment of the syntax.

Much work remains to done. We need to formalize the semantics of higher
inductive types. This can be done using W-types, but will take work. To build
the proof assistant for cubical type theory in Nuprl, we need to either derive the
verified type-checking algorithm, or, alternatively, use our definition of truth to
verify sound rules of inference and tactics to use these rules (this is how Nuprl
proofs are constructed).

Many, many details can be found at

http://www.nuprl.org/wip/Mathematics/cubical!type!theory/

References

[1] BickFORD, M. Formalizing category theory and presheaf models of type
theory in nuprl, 2018.

[2] CoHEN, C., CoQuAND, T., HUBER, S., AND MORTBERG, A. Cubical type

theory: A constructive interpretation of the univalence axiom. In TYPES
(2015).

http://www.nuprl.org/wip/Mathematics/cubical!type!theory/

term operator arity
trm= (0, 0) typ=1(0, 1) encode (1) Ttyp]
bdtrm= (1, 0) typfam=(1, 1) pathabs [typ; bdtrm]
pathapp [typ; trm; trm]
lambda [typ; bdtrm]
type operator arity apply [trm; typfam; trm]
Glue [typ; trm; typ; trm] pair [trm; typfam; trm]
case [trm; trm; typ; typ] fst [typ; typfam; trm]
Pi [typ; typfam] snd [typ; typfam; trm]
Sigma [typ; typfam] glue [trm; trm; trm; trm]
Path [typ; trm; trm] unglue [typ; trm; typ; trm; trm]
F [comp [trm; typfam; bdtrm; trm]
1 [0
decode(i) [trm] 1 [1]
universe(i) [1] max [trm; trm]
nuprlType(T) [1] min [trm; trm]
inv [trm]
meet [trm; trm]
join [trm; trm]
eq0 [trm]
eql [trm]
nuprlTerm (T, t) [

Figure 1: Arities for operators of cubical type theory

2 Appendix

We include Figure [I] to show the operators of cubical type theory that are
included in our definition of truth.

	Abstract
	Appendix

