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Motivation

▶ Many aspects of modern synthetic mathematics work via
sheaf theoretic methods.

▶ We create a topos of sheaves with desired internal language
and properties.

▶ Sometimes one topos is not enough:

▶ In synthetic algebraic geometry we would like to consider a
chain of topoi:

Zar ⊇ Et ⊇ fppf

▶ In simplicial type theory / triangulated type theory, we
consider a larger universe than the one we are interested in.

Goal

Work with subtopoi in HoTT in a sheaf theoretic way.
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Subtopoi in HoTT

Consider a family of propositions P : I → PropU

Definition (1)

A type X is a sheaf for P if for all i : I the natural map

X → (P(i) → X )

is an equivalence. We define UP := {X : U | X is a sheaf}.

We have a sheafification functor ⃝P : U → UP

Definition (3)

The choice of a subuniverse and sheafification functor, such that
there exists a family of propositions generating it is called a
topological modality.

1Spitters, Shulman, and Rijke 2020.
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Presentations

Definition (2)

▶ A presentation of a topological modality is a collection T
of types closed under Σ, containing 1.

▶ The topological modality presented by T is given by the
propositions ∥X∥ for X in T .

Examples

▶ Trivial presentation T = {1}, presenting whole universe.

▶ Given any topological modality, defined by P : I → PropU ,
the Σ-closure of P ∪ 1 gives a presentation.

More interesting examples will need new axioms in HoTT...

2Moeneclaey 2024.
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Interesting Examples

(Presheaf) synthetic algebraic geometry (SAG)3: Adds a ring R to
HoTT + axioms.

Example

Tfppf := {{x ∈ R | g(x) = 0} | g a monic polynomial in R}

Simplicial / triangulated type theory (TTT)4: Adds a bounded
distributive lattice I to HoTT + axioms.

Example

Tsimp := Σ−closure({(i ≤ j) + (j ≤ i) | i , j ∈ I})

3Cherubini, Coquand, and Hutzler 2023.
4Gratzer, Weinberger, and Buchholtz 2024.
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Sheaf Conditions

Goal

Find easier way to determine which types are sheaves.

▶ The solution is a sheaf condition.

▶ HoTT is higher:

Set / 0-type Sheaf of sets
1-type Sheaf of groupoids
n-type Sheaf of n-groupoids

▶ So expect to get higher sheaf conditions.

▶ For each n, want a condition for an n-type to be a sheaf.
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Basic properties

Definition

A cover for a presentation T is a map f : X → Y such that for all
y : Y , the fiber f −1(y) is in T .

Lemma

▶ Any equivalence is a cover.

▶ Covers are closed under pullback and composition.
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Sheaf Conditions

Definition

Given f : A → X and g : B → X their join is the pushout

A×X B B

A A ∗X B
⌜

Given f : A → X write A∗n
X for the n-fold iterated join of f with

itself.



Sheaf Conditions

Fix a presentation T .

Theorem (Sheaf Condition)

Let X be an n-type. Then X is a sheaf for T iff for all T -covers
f : A → B the natural map

(B → X ) → (A∗n+2
B → X )

is an equivalence.



Sheaf Conditions

Question

Why is this a sheaf condition?

Corollary

A 0-type X is a sheaf for T iff for all T -covers f : A → B the
natural map

XB → lim(XA ⇒ XA×BA)

is an equivalence.
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Sheaf Conditions: In Practice

Example

In TTT: The type I is a Tsimp sheaf.

Proof.

Using the sheaf conditions + the axioms of TTT I is a sheaf iff

I ≃ lim(I/(i ≤ j)× I/(j ≤ i) ⇒ I/(i = j))

Pure algebra!
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Projective Modalities

Externally, if our presentation is made up of representables, then
these are projective.

Definition

A type X is projective if for any B : X → U such that∏
x :X ∥B(x)∥, we have ∥

∏
x :X B(x)∥.

Definition

A presentation T is projective if every X ∈ T is projective.

Example

Both of the running examples in SAG / TTT are projective (at
least in models).
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Lemma (T -local choice)

Let T be a projective presentation and C be projective. Let
B : C → U be such that

∏
c:C ⃝T∥B(c)∥. Then there is a

T -cover f : Z → C such that∏
z:Z

B(f (z))



Cohomology

Definition

Given a type X and a group G , its cohomology is given by

Hn(X ,G ) := ∥X → K (G , n)∥0

Let T be a presentation.

▶ The nth Eilenberg-MacLane space in the subuniverse UT is
given by ⃝TK (G , n) for G : UT .

▶ The set truncation modality in the subuniverse is ⃝T∥X∥0.

Lemma

Given any projective type X and any group G, Hn(X ,G ) = 0.

Goal

How does cohomology descend to modalities from projective
presentations?
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Cohomology

Definition

Given a type X : UT and a local group G : UT , its cohomology is
given by

Hn
T (X ,G ) := ⃝T∥X → ⃝TK (G , n)∥0



Cohomology

Given an abelian group A and type X :

AX d0

−→ AX×X d1

−→ AX×X×X
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AX d0
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−→ AX×X×X

d0(f )(x , x ′) := f (x)− f (x ′)



Cohomology

Given an abelian group A and type X :

AX d0

−→ AX×X d1

−→ AX×X×X

d1(f )(x , x ′, x ′′) := f (x , x ′)− f (x , x ′′) + f (x ′, x ′′)



Cohomology

Given an abelian group A and type X :

AX d0

−→ AX×X d1

−→ AX×X×X

Given a presentation T we will say A satisfies descent for T if for
all X ∈ T the above sequence is exact.



Theorem

Let T be a projective presentation and A an abelian group sheaf
satisfying descent for T . Then for all projective X , we have
H1
T (X ,A) = 0, where 0 is the trivial abelian group.

Proof (Sketch).

▶ Take χ : X → ⃝TK (A, 1). χ is T -locally merely constant.

▶ Local choice gives cover of X on which χ is constant.

▶ Descent for A glues partial sections to a global section.

Example (for algebraic geometry enthusiasts)

In SAG, an important class of modules (quasi-coherent) satisfy
descent for Tfppf . Hence these have 0 cohomology on projectives -
including R (and all affine schemes).
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Thank you!
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