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> Many aspects of modern synthetic mathematics work via
sheaf theoretic methods.
> We create a topos of sheaves with desired internal language
and properties.
> Sometimes one topos is not enough:
» In synthetic algebraic geometry we would like to consider a

chain of topoi:
Zar O Et D fppf

> In simplicial type theory / triangulated type theory, we
consider a larger universe than the one we are interested in.

Work with subtopoi in HoTT in a sheaf theoretic way.
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Definition (1)
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Subtopoi in HoTT

Consider a family of propositions P : | — Prop,,

Definition (1)
A type X is a sheaf for P if for all i : | the natural map

X = (P(i) = X)
is an equivalence. We define Up := {X : U | X is a sheaf}.

We have a sheafification functor Op : U — Up

Definition (3)

The choice of a subuniverse and sheafification functor, such that
there exists a family of propositions generating it is called a
topological modality.

1Spitters, Shulman, and Rijke 2020.
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Definition (?)
A presentation of a topological modality is a collection T
of types closed under ¥, containing 1.

The topological modality presented by T is given by the
propositions || X|| for X in T.

Examples

» Trivial presentation T = {1}, presenting whole universe.

» Given any topological modality, defined by P : | — Prop,,
the X-closure of P U1 gives a presentation.

More interesting examples will need new axioms in HoTT...

2Moeneclaey 2024.
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(Presheaf) synthetic algebraic geometry (SAG)3: Adds a ring R to
HoTT + axioms.

Example
Teppt = {{x € R | g(x) =0} | g a monic polynomial in R}

Simplicial / triangulated type theory (TTT)*: Adds a bounded
distributive lattice I to HoTT + axioms.

Example
Tsimp 1= X—closure({(i < j)+ (j <i)|i,jel})

3Cherubini, Coquand, and Hutzler 2023.
*Gratzer, Weinberger, and Buchholtz 2024.
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Sheaf Conditions

Find easier way to determine which types are sheaves.

> The solution is a sheaf condition.
» HoTT is higher:

Set / O-type Sheaf of sets
1-type Sheaf of groupoids
n-type Sheaf of n-groupoids

» So expect to get higher sheaf conditions.
> For each n, want a condition for an n-type to be a sheaf.
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Basic properties

A cover for a presentation T is a map f : X — Y such that for all
y .Y, the fiber f71(y)isin T.

= Any equivalence is a cover.

= Covers are closed under pullback and composition.



Sheaf Conditions

Definition
Given f: A— X and g : B — X their join is the pushout

AxxB —— B

L

A—— Asx B

Given f : A — X write A} for the n-fold iterated join of f with
itself.



Sheaf Conditions

Fix a presentation T.

Theorem (Sheaf Condition)

Let X be an n-type. Then X is a sheaf for T iff for all T-covers
f : A— B the natural map

(B — X) = (AF? — X)

is an equivalence.
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Sheaf Conditions: In Practice

In TTT: The type I is a Tgjmp sheaf.

Using the sheaf conditions + the axioms of TTT I is a sheaf iff
I~ lim(T/ (i < ) x 1/ < i) = 1/(i = )

Pure algebra! Ol
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Projective Modalities

Externally, if our presentation is made up of representables, then
these are projective.

Definition

A type X is projective if for any B : X — U such that
[Lex IB(X)I, we have [T],.x B(x)I|

Definition

A presentation T is projective if every X € T is projective.

Example

Both of the running examples in SAG / TTT are projective (at
least in models).



Lemma ( T-local choice)

Let T be a projective presentation and C be projective. Let
B : C — U be such that [[..- O7||B(c)||. Then thereis a
T-cover f : Z — C such that

[18(f(2))
z:Z
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Cohomology

Definition
Given a type X and a group G, its cohomology is given by

H"(X, G) = || X — K(G,n)lo

Let T be a presentation.
= The nth Eilenberg-MacLane space in the subuniverse U7 is
given by O7K(G,n) for G : Ur.
» The set truncation modality in the subuniverse is O 1] X]|o.

Lemma
Given any projective type X and any group G, H"(X,G) = 0.

Goal
How does cohomology descend to modalities from projective
presentations?



Cohomology

Given a type X : Ut and a local group G : U, its cohomology is
given by

H7(X, G) :== O7lX = OTK(G,n)llo
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Cohomology

Given an abelian group A and type X:

d° d?
AX _)AXXX _)AXXXXX

dY(F)(x,x', x") = f(x,x") = F(x,x") + F(x', x")



Cohomology

Given an abelian group A and type X:
AX L AXxX Al AX XXX

Given a presentation T we will say A satisfies descent for T if for
all X € T the above sequence is exact.
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Theorem

Let T be a projective presentation and A an abelian group sheaf
satisfying descent for T. Then for all projective X, we have
HX-(X,A) =0, where 0 is the trivial abelian group.

Proof (Sketch).
Take x : X = O71K(A,1). x is T-locally merely constant.
Local choice gives cover of X on which x is constant.

Descent for A glues partial sections to a global section.

Example (for algebraic geometry enthusiasts)

In SAG, an important class of modules (quasi-coherent) satisfy
descent for Tg,,r. Hence these have 0 cohomology on projectives -
including R (and all affine schemes).



Thank you!
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