PROPOSITIONAL GEOMETRIC TYPE THEORY HOTT/UF 2025

Johannes Schipp von Branitz¹ Ulrik Buchholtz²

University of Nottingham

April 16, 2025

¹https://jsvb.xyz
²https://ulrikbuchholtz.dk

GEOMETRIC TYPE THEORY Setting & Idea

Kind of Space	Geometric Int. Lang	Full Int. Lang
Top _{sob}	prop. geom. logic	compl. Heyting alg.
Loc	prop. geom. logic	compl. Heyting alg.
Topos	geom. logic	MLTT
∞ -Topos	∞ -geom. logic?	HoTT

► Toposes classify geometric theories T:

 $\operatorname{Topos}(\mathcal{E}, [\mathbb{T}]) \cong \operatorname{Mod}_{\mathbb{T}}(\mathcal{E}).$

- Geometric logic is incomplete, so we need to study models in all toposes.
- Some topos-valid constructions, such as Π-types, are not geometric/continuous, i.e. not preserved by inverse image functors.
- There are still toposes classifying arbitrary objects or maps, so geometric reasoning should suffice.
- ► This suggests treating toposes as types (cf. [Vic07]).

GEOMETRIC TYPE THEORY MOTIVATION

- Recognition of geometric statements
- ► Transfer of results: *geometric* consequences of non-geometric statements are preserved
- Unification of external and internal perspective
- Unification of synthetic mathematics (SAG, SDG, STC)
- General treatment of modalities
- Recognition of classified geometric theories
- Synthetic Morita equivalences/bridges
- Definition of ∞ -geometric logic
- Formalisation

GEOMETRIC TYPE THEORY Related Work

There are lots of related ideas. None of them talk faithfully about *all* toposes, use the universal property of toposes as classifying spaces, and are an extension of HoTT.

- ► Topos-theoretic Multiverse [Ble]
- Multimodal Adjoint Type Theory [Shu23]
- Continuous Truth [Fou13]
- Abstract Stone Duality [Tay11]
- Synthetic Topology [Esc04]
- Synthetic Topos Theory [Uem]
- Arithmetic Type Theory [Vic08]

GEOMETRIC TYPE THEORY Sketch of Intended Semantics

GTT should³ be modeled by

 $Sh_{\infty}(Topos^{1}_{(2,1)}, J_{\acute{e}tale})$

with base type $\mathbf{O} = [FinSet, Set]$ classifying étale spaces (a.k.a. internal types)

$$\begin{array}{ccc} \mathbf{T}(X) & \longrightarrow & \dot{\mathbf{O}} \\ \downarrow & {}^{-} & \downarrow \\ \mathcal{E} & \xrightarrow{X} & \mathbf{O} \end{array} \end{array},$$

letting us recover the Sierpiński space

$$\mathbf{S} = \sum_{X:\mathbf{O}} \operatorname{isProp}(\mathbf{T}(X))$$

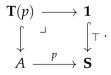
³up to strictness and size issues, and a good choice of Grothendieck topology

PROPOSITIONAL GEOMETRIC TYPE THEORY INTENDED SEMANTICS

Approximate above setting using semantics in the category

 $Sh_0(Loc,J_{opencover})$

of sheaves of sets on the category of localic toposes with the subcanonical open cover topology.
The Sierpiński space classifies open subtypes:



PROPOSITIONAL GEOMETRIC TYPE THEORY SYNTAX

- Intensional MLTT
- Tarski-style universe

$$\frac{\Gamma \vdash p : \mathbf{S}}{\Gamma \vdash \mathbf{T}(p) \text{ type}}$$

- ▶ Bottom and top elements \bot, \top : S with $T(\bot) \equiv 0$ and $T(\top) \equiv 1$.
- ▶ Primitive binary conjunctions $\land : S \rightarrow S \rightarrow S$
- Order relation $p \le q := (p \land q =_{\mathbf{S}} p)$
- Meet-semilattice axioms

PROPOSITIONAL GEOMETRIC TYPE THEORY OVERT DISCRETE SPACES

• $f : A \rightarrow B$ is open if

$$f^*: (B \to \mathbf{S}) \to (A \to \mathbf{S})$$

has a left adjoint $f_!$.

• *I* is overt if $!: I \rightarrow \mathbf{1}$ is open, yielding

$$\bigvee: (I \to \mathbf{S}) \to \mathbf{S}.$$

- A is *discrete* if $\Delta : A \to A \times A$ is open
- ► Assume **N** is overt discrete, **S**, **T**(*p*) overt.
- Being overt discrete is closed under positive type formers.

$$(\mathbf{T}(p) \to \mathbf{S}) \to \sum_{q:\mathbf{S}} (q \le p)$$
$$\varphi \mapsto p \land \bigvee_{x:\mathbf{T}(p)} \varphi(x)$$

is an equivalence.

PROPOSITIONAL GEOMETRIC TYPE THEORY Directed Univalence

For *A* and *B* overt discrete we should have *directed univalence*

$$(A \to B) \tilde{\to} \sum_{\gamma: \mathbf{S} \to \text{ODisc}} (\gamma(\bot) = A) \times (\gamma(\top) = B)$$
$$f \mapsto \lambda p. \sum_{b: B} \mathbf{T}(p) \star \text{fib}_f(b),$$

just like in Condensed Type Theory [Bar24, Com24].

PROPOSITIONAL GEOMETRIC TYPE THEORY CURRENT WORK

- Characterise the topology of function spaces
- Use synthetic quasi-coherence and local choice
- ► Justify usability of our theory by proving (cf. [Hyl81])

$$\big((N \to 2) \to 2\big) \simeq N$$

- Extend simplicial aspects
- Extend to full Geometric Type Theory

REFERENCES I

Reid Barton.

Directed aspects of condensed type theory, September 2024.

https://www.youtube.com/watch?v=0elJcaw5NWw.

Ingo Blechschmidt.

The topos-theoretic multiverse: a modal approach for computation.

https://www.speicherleck.de/iblech/stuff/early-draft-modal-multiverse.pdf.

Arthur Commelin.

Condensed type theory, May 2024.

https://www.youtube.com/watch?v=dJtF4P0XVUM.

Martín Escardó.

Synthetic topology: of data types and classical spaces.

Electronic Notes in Theoretical Computer Science, 87:21–156, 2004. Proceedings of the Workshop on Domain Theoretic Methods for Probabilistic Processes.

Michael P. Fourman.

Continuous truth II: Reflections.

In *Logic, language, information, and computation,* volume 8071 of *Lecture Notes in Comput. Sci.*, pages 153–167. Springer, Heidelberg, 2013.

REFERENCES II

J. M. E. Hyland.

Function spaces in the category of locales.

In *Continuous Lattices*, volume 871, pages 264–281. Springer Berlin Heidelberg, 1981. Series Title: Lecture Notes in Mathematics.

Michael Shulman.

Semantics of multimodal adjoint type theory.

In Mathematical Foundations of Programming Semantics—Proceedings of the Thirty-Ninth Annual Conference, volume 3 of Electron. Notes Theor. Inform. Comput. Sci., pages Art. No. 18, 20. Episciences, Villeurbanne, 2023.

Paul Taylor.

Foundations for computable topology.

In *Foundational Theories of Classical and Constructive Mathematics*, number 76 in Western Ontario Series in Philosophy of Science. Springer-Verlag, January 2011.

Taichi Uemura.

Synthetic topos theory.

https://uemurax.github.io/synthetic-topos-theory.

Steven Vickers.

Locales and toposes as spaces.

In Handbook of spatial logics, pages 429-496. Springer, Dordrecht, 2007.

REFERENCES III

Steven Vickers.

A localic theory of lower and upper integrals. *MLQ Math. Log. Q.*, 54(1):109–123, 2008.