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Disclaimer

This presentation is not about the history of mathematics.
More honest title:

The cellular Hurewicz theorem in constructive HoTT
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The Cellular Hurewicz Theorem

Let 𝑋 be a (𝑛 − 1)-connected CW complex.

Then 𝜋𝑎𝑏𝑛 (𝑋) ≅ 𝐻𝑐𝑤𝑛 (𝑋).
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‖𝑋‖𝑛−1 ≃ 1
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CW complexes

A CW complex is a type that can be built iteratively by gluing
spherical cells of increasing dimension.

𝑋−1 𝑋0 𝑋1 𝑋2 ...

▶ 𝑋−1 is defined to be empty

▶ 𝑋0 is a set of points

▶ 𝑋1 is obtained by gluing edges on 𝑋0
▶ 𝑋2 is obtained by gluing discs on 𝑋1
▶ etc.

••

•

• •
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CW complexes

This definition translates easily to HoTT (Favonia and Buchholtz '18)

Caveat: to work with CW complexes, we often need the axiom of
choice for type families indexed over the sets of cells

→ not a problem if we only allow finite sets of cells
(more generally, we can allow projective sets of cells)
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Cellular Homology

We can define cellular homology groups for CW complexes,
following the traditional definition from algebraic topology

𝐻𝑐𝑤𝑛 (𝑋) for 𝑛 ∈ N

▶ measure the number of 𝑛-dimensional holes of 𝑋
▶ independent of the cellular structure (homotopy invariant)

▶ satisfy the Eilenberg Steenrod axioms
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Homotopy vs Homology

𝜋𝑛(𝑋) 𝐻𝑐𝑤𝑛 (𝑋)

And yet, related by Hurewicz's theorem:

If 𝑋 is (𝑛 − 1)-connected, then 𝜋𝑎𝑏𝑛 (𝑋) ≅ 𝐻𝑐𝑤𝑛 (𝑋)
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Hurewicz connectedness

Say that a CW complex is Hurewicz 𝑛-connected when it has

▶ exactly one 0-cell

▶ no 𝑘-cell for 𝑘 ≤ 𝑛

0-connected but not

Hurewicz 0-connected
Hurewicz 0-connected
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Hurewicz connectedness

Say that a CW complex is Hurewicz 𝑛-connected when it has

▶ exactly one 0-cell

▶ no 𝑘-cell for 𝑘 ≤ 𝑛

Theorem

If 𝑋 is Hurewicz (𝑛 − 1)-connected, then 𝜋𝑎𝑏𝑛 (𝑋) ≅ 𝐻𝑐𝑤𝑛 (𝑋)

Proof

Follows from Blakers-Massey and excision
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Hurewicz Approximation Theorem

Theorem

Every 𝑛-connected CW complex is equivalent to a Hurewicz
𝑛-connected CW complex

Proof attempt

Classical strategy: replace the set of (𝑛 + 1)-cells with a generating
set for 𝜋𝑛+1(𝑋)

→ We need to show that 𝜋𝑛+1(𝑋) is finitely (projectively) generated

→ Not true for finite CW complexes: 𝜋2(S1 ∨ S2) ≃ ⨁Z Z
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Second attempt

Dimension 0

Proceed by induction on the number of vertices

→ Only works for finite sets of cells
→ unclear how to generalise this reasoning to dimensions > 0
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Third attempt

Dimension 0

Contracting all the red edges: 𝑋′ ≃ (⋁𝑐1 S1) ∨ S1

Contracting the blue edge + connectedness: 𝑋′ ≃ 𝑋1 ∨ (⋁𝑐0 S1)
Thus 𝑋1 ∨ (⋁𝑐0 S1)⏟

almost 𝑋1

≃ (⋁𝑐1 S1) ∨ S1⏟
Hurewicz 0-connected

Conclude by adding 𝑐0 2-cells.
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Third attempt

Dimension n

Suppose that 𝑋 is a 𝑛-connected CW complex.

In particular 𝑋 is (𝑛 − 1)-connected, and thus by induction
hypothesis 𝑋 is Hurewicz (𝑛 − 1)-connected.

We can show that 𝑋𝑛+1 ∨ (⋁𝑐𝑛 S𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
almost 𝑋𝑛+1

≃ (⋁𝑐𝑛+1 S𝑛+1)⏟
Hurewicz n-connected

We conclude by adding 𝑐𝑛 (𝑛 + 2)-cells.
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Conclusion

Theorem (constructively)

Every 𝑛-connected CW complex is equivalent to a Hurewicz
𝑛-connected CW complex

Theorem (constructively)

If 𝑋 is (𝑛 − 1)-connected, then 𝜋𝑎𝑏𝑛 (𝑋) ≅ 𝐻𝑐𝑤𝑛 (𝑋)

Applications

Serre Finiteness Theorem (Barton and Campion '22, Milner '23)
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Thank you!


