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Disclaimer

This presentation is not about the history of mathematics.
More hanest title:

The cellular Hurewicz thearem in constructive HoTT



The Cellular Hurewicz Theorem

Let X be a (n - 1)-connected CW complex.
Then m2b(X) = HSY(X).
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Let X be a (n - 1)—connected CW complex.
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CW complexes

A CW complex is a type that can be built iteratively by gluing
spherical cells of increasing dimension.

Xq 3 Xg &> X; & X, — ..

X_, is defined to be empty

X, is a set of paints

X, is abtained by gluing edges on X,
X, is abtained by gluing discs on X,
etc.

vV v v VY
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CW complexes

This definition translates easily to HoTT (Favonia and Buchholtz '18)

Caveat: to wark with CW complexes, we often need the axiom of
chaice for type families indexed over the sets of cells

— not a problem if we anly allow finite sets of cells
(more generally, we can allow projective sets of cells)
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Cellular Homalagy

We can define cellular homology groups for CW complexes,
following the traditional definition from algebraic topology

H"(X) forneN

» measure the number of n-dimensional holes of X
» independent of the cellular structure (homotopy invariant)
» satisfy the Eilenberg Steenrod axioms



Homoatopy vs Homology

HR"(X)




Homoatopy vs Homology

my(X) Hp"(X)

(118" =, Xllo | defined using a cellular structure




Homoatopy vs Homology

m,(X)

HR"(X)

IS =, Xllo

defined using a cellular structure

(X x Y) = 10,(X) x1,(Y)

HE"(X x Y) = @2, H(X) ® HY(Y)




Homoatopy vs Homology

m,(X)

HR"(X)

IS =, Xllo

defined using a cellular structure

(X x Y) = 10,(X) x1,(Y)

HE"(X x Y) = @2, H(X) ® HY(Y)

Blakers-Massey theorem

excision




Homoatopy vs Homology

m,(X)

HR"(X)

IS =, Xllo

defined using a cellular structure

(X x Y) = 10,(X) x1,(Y)

HE"(X x Y) = @2, H(X) ® HY(Y)

Blakers-Massey theorem

excision

m,(SF) = 1M

HY(SkY =0 if nzk




Homoatopy vs Homology

m,(X)

HR"(X)

IS =, Xllo

defined using a cellular structure

(X x Y) = 10,(X) x1,(Y)

HE"(X x Y) = @2, H(X) ® HY(Y)

Blakers-Massey theorem

excision

m,(SF) = 1M

HY(SkY =0 if nzk

And yet, related by Hurewicz's theorem:
If X is (n - 1)-connected, then m2(X) = HSY(X)




Hurewicz connectedness

Say that a CW complex is Hurewicz n-connected when it has
» exactly ane 0-cell
» no k-cell fork < n



Hurewicz connectedness

Say that a CW complex is Hurewicz n-connected when it has
» exactly ane 0-cell
» no k-cell fork < n

0-connected but not
Hurewicz 0-connected



Hurewicz connectedness

Say that a CW complex is Hurewicz n-connected when it has
» exactly ane 0-cell
» no k-cell fork < n

0-connected but not Hurewicz 0-connected
Hurewicz 0-connected



Hurewicz connectedness

Say that a CW complex is Hurewicz n-connected when it has
» exactly ane 0-cell
» no k-cell fork < n

Theorem

If X is Hurewicz (n - 1)-connected, then m2°(X) = HS™(X)
Proof

Follows from Blakers-Massey and excision O
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Hurewicz Approximation Theorem

Thearem

Every n-connected CW complex is equivalent to a Hurewicz
n-connected CW complex

Proof attempt

Classical strategy: replace the set of (n + 1)-cells with a generating
set for m,,,(X)

— We need to show that m,,,,(X) is finitely (projectively) generated
— Not true for finite CW complexes: m(S' vS?) = @, Z
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Second attempt

Dimension 0

Proceed by induction an the number of vertices

— Only warks for finite sets of cells
— unclear how to generalise this reasoning to dimensions > 0
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Dimension 0

Contracting all the red edges: X' = (\/C1 51) vg'
Contracting the blue edge + connectedness: X' = X, v (\/CO 81)

Thus X, v (V, 8') = (V,S')vs!

almost X Hurewicz 0-connected
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Third attempt

Dimension 0

Contracting all the red edges: X' = (\/C1 51) vg'
Contracting the blue edge + connectedness: X' = X, v (\/CO 81)
Thus X, v (V, 8') = (V,S')vs!

almost X Hurewicz 0-connected

Conclude by adding c, 2-cells.

13
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Third attempt

Dimension n
Suppose that x is a n-cannected CW complex.

In particular X is (n - 1)-connected, and thus by induction
hypothesis x is Hurewicz (n - 1)-connected.

We can show that xn+1v(\/c”5n+1) - (vcn+1Sn+1)

% J e

almost X, 4 Hurewicz n-connected

We conclude by adding c,, (n +2)-cells.

1



Conclusion

Theorem (canstructively)

Every n-connected CW complex is equivalent to a Hurewicz
n-connected CW complex

Theorem (constructively)
If X is (n - 1)-connected, then ma(X) = HS"(X)

Applications
Serre Finiteness Theorem (Barton and Campion '22, Milner '23)
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Thank you!



