
The Arend Theorem Prover

Fedor Part Valery Isaev Sergey Sinchuk

April 15, 2025

JetBrains Research

Univalent Foundations and Homotopy Type Theory

• Univalent Foundations (UF) of mathematics were formulated by Vladimir

Voevodsky between 2006 and 2009.

• Homotopy types are primitives rather than sets.

• Inspired by the homotopy semantics of MLTT:

a =A b – type of paths a b,

p =a=Ab q – type of homotopies p q, etc

• Homotopy Type Theory (HoTT) extends MLTT with:

1. Univalence axiom: (A ∼= B) ∼= (A =U B).

(isomorphic structures are equal, U-object classifier)

2. Higher inductive types: inductive types D + higher path constructors a =D b.

(quotients, CW complexes)

1

Univalent Foundations and Homotopy Type Theory

• Univalent Foundations (UF) of mathematics were formulated by Vladimir

Voevodsky between 2006 and 2009.

• Homotopy types are primitives rather than sets.

• Inspired by the homotopy semantics of MLTT:

a =A b – type of paths a b,

p =a=Ab q – type of homotopies p q, etc

• Homotopy Type Theory (HoTT) extends MLTT with:

1. Univalence axiom: (A ∼= B) ∼= (A =U B).

(isomorphic structures are equal, U-object classifier)

2. Higher inductive types: inductive types D + higher path constructors a =D b.

(quotients, CW complexes)

1

Univalent Foundations and Homotopy Type Theory

• Univalent Foundations (UF) of mathematics were formulated by Vladimir

Voevodsky between 2006 and 2009.

• Homotopy types are primitives rather than sets.

• Inspired by the homotopy semantics of MLTT:

a =A b – type of paths a b,

p =a=Ab q – type of homotopies p q, etc

• Homotopy Type Theory (HoTT) extends MLTT with:

1. Univalence axiom: (A ∼= B) ∼= (A =U B).

(isomorphic structures are equal, U-object classifier)

2. Higher inductive types: inductive types D + higher path constructors a =D b.

(quotients, CW complexes)

1

Univalent Foundations and Homotopy Type Theory

• Univalent Foundations (UF) of mathematics were formulated by Vladimir

Voevodsky between 2006 and 2009.

• Homotopy types are primitives rather than sets.

• Inspired by the homotopy semantics of MLTT:

a =A b – type of paths a b,

p =a=Ab q – type of homotopies p q, etc

• Homotopy Type Theory (HoTT) extends MLTT with:

1. Univalence axiom: (A ∼= B) ∼= (A =U B).

(isomorphic structures are equal, U-object classifier)

2. Higher inductive types: inductive types D + higher path constructors a =D b.

(quotients, CW complexes)

1

Univalent Foundations and Homotopy Type Theory

• Univalent Foundations (UF) of mathematics were formulated by Vladimir

Voevodsky between 2006 and 2009.

• Homotopy types are primitives rather than sets.

• Inspired by the homotopy semantics of MLTT:

a =A b – type of paths a b,

p =a=Ab q – type of homotopies p q, etc

• Homotopy Type Theory (HoTT) extends MLTT with:

1. Univalence axiom: (A ∼= B) ∼= (A =U B).

(isomorphic structures are equal, U-object classifier)

2. Higher inductive types: inductive types D + higher path constructors a =D b.

(quotients, CW complexes)

1

Synthetic and set-theoretical formalizations in HoTT

1. (Synthetic homotopy theory). Utilizes the equality type to encapsulate complex
homotopy structures. E.g. S1 is HIT with constructor base : S1 and higher
constructor loop : base =S1 base.

• Formal proofs are very close to ’textbook’ proofs. UA ⇒ π1(S1) = Z.

• Has the potential to reshape certain areas of modern mathematics by adopting a

higher categorical perspective.

• Limitations: original HoTT cannot express general ∞-categories (types are

∞-groupoids). We need a directed HoTT (active research area).

2. (Set theory). A variant of set theory is a fragment of HoTT.

• h-propositions – types A s.t. PI(A), h-sets – types A s.t. UIP(A).

• Extensionality: quotients, function and proposition extensionality, structure identity

principle.

2

Synthetic and set-theoretical formalizations in HoTT

1. (Synthetic homotopy theory). Utilizes the equality type to encapsulate complex
homotopy structures. E.g. S1 is HIT with constructor base : S1 and higher
constructor loop : base =S1 base.

• Formal proofs are very close to ’textbook’ proofs. UA ⇒ π1(S1) = Z.

• Has the potential to reshape certain areas of modern mathematics by adopting a

higher categorical perspective.

• Limitations: original HoTT cannot express general ∞-categories (types are

∞-groupoids). We need a directed HoTT (active research area).

2. (Set theory). A variant of set theory is a fragment of HoTT.

• h-propositions – types A s.t. PI(A), h-sets – types A s.t. UIP(A).

• Extensionality: quotients, function and proposition extensionality, structure identity

principle.

2

HoTT/UF in ITPs

Available options wrt ITPs for HoTT/UF:

1. Purely axiomatic HoTT in mainstream ITPs based on MLTT/CIC (Coq, Agda,
XXXLean, etc).

• Badly impairs computational content of MLTT.

• Formalization quickly becomes unnecessarily cumbersome.

2. Fully computational ITPs based on Cubical Type Theories (e.g. Cubical Agda).

• CTTs are sophisticated two-level theories with interval pretype I. Inspiration –

constructive models of HoTT in cubical sets Set�
op

.

• Although CTTs are of theoretical interest, something much simpler might be

sufficient for practical formalization.

3. Pragmatic approach: ITP which focuses on practical aspects of HoTT/UF

formalization (Arend).

3

HoTT/UF in ITPs

Available options wrt ITPs for HoTT/UF:

1. Purely axiomatic HoTT in mainstream ITPs based on MLTT/CIC (Coq, Agda,
XXXLean, etc).

• Badly impairs computational content of MLTT.

• Formalization quickly becomes unnecessarily cumbersome.

2. Fully computational ITPs based on Cubical Type Theories (e.g. Cubical Agda).

• CTTs are sophisticated two-level theories with interval pretype I. Inspiration –

constructive models of HoTT in cubical sets Set�
op

.

• Although CTTs are of theoretical interest, something much simpler might be

sufficient for practical formalization.

3. Pragmatic approach: ITP which focuses on practical aspects of HoTT/UF

formalization (Arend).

3

HoTT/UF in ITPs

Available options wrt ITPs for HoTT/UF:

1. Purely axiomatic HoTT in mainstream ITPs based on MLTT/CIC (Coq, Agda,
XXXLean, etc).

• Badly impairs computational content of MLTT.

• Formalization quickly becomes unnecessarily cumbersome.

2. Fully computational ITPs based on Cubical Type Theories (e.g. Cubical Agda).

• CTTs are sophisticated two-level theories with interval pretype I. Inspiration –

constructive models of HoTT in cubical sets Set�
op

.

• Although CTTs are of theoretical interest, something much simpler might be

sufficient for practical formalization.

3. Pragmatic approach: ITP which focuses on practical aspects of HoTT/UF

formalization (Arend).

3

Arend at a Glance

• The development of Arend started in 2015 at JetBrains Research.

• The type theory of Arend is based on a mild extension of MLTT with the primitive
interval type I (HoTT-I).

• With I, HITs are defined as ordinary inductive types with conditions.

• Arend supports a powerful system of records and classes with partial

implementations and anonymous extensions.

• Arend has built-in type for arrays (= vectors+lists+({0, . . . , n} → A)).

• A rich tooling for Arend is provided by a plugin for IntelliJ IDEA.

• Arend is fully constructive. The main library arend-lib: constructive mathematics

(the largest part), synthetic homotopy theory, theoretical computer science.

• Near future: support for a version of directed HoTT.

4

Arend at a Glance

• The development of Arend started in 2015 at JetBrains Research.

• The type theory of Arend is based on a mild extension of MLTT with the primitive
interval type I (HoTT-I).

• With I, HITs are defined as ordinary inductive types with conditions.

• Arend supports a powerful system of records and classes with partial

implementations and anonymous extensions.

• Arend has built-in type for arrays (= vectors+lists+({0, . . . , n} → A)).

• A rich tooling for Arend is provided by a plugin for IntelliJ IDEA.

• Arend is fully constructive. The main library arend-lib: constructive mathematics

(the largest part), synthetic homotopy theory, theoretical computer science.

• Near future: support for a version of directed HoTT.

4

Arend at a Glance

• The development of Arend started in 2015 at JetBrains Research.

• The type theory of Arend is based on a mild extension of MLTT with the primitive
interval type I (HoTT-I).

• With I, HITs are defined as ordinary inductive types with conditions.

• Arend supports a powerful system of records and classes with partial

implementations and anonymous extensions.

• Arend has built-in type for arrays (= vectors+lists+({0, . . . , n} → A)).

• A rich tooling for Arend is provided by a plugin for IntelliJ IDEA.

• Arend is fully constructive. The main library arend-lib: constructive mathematics

(the largest part), synthetic homotopy theory, theoretical computer science.

• Near future: support for a version of directed HoTT.

4

Arend at a Glance

• The development of Arend started in 2015 at JetBrains Research.

• The type theory of Arend is based on a mild extension of MLTT with the primitive
interval type I (HoTT-I).

• With I, HITs are defined as ordinary inductive types with conditions.

• Arend supports a powerful system of records and classes with partial

implementations and anonymous extensions.

• Arend has built-in type for arrays (= vectors+lists+({0, . . . , n} → A)).

• A rich tooling for Arend is provided by a plugin for IntelliJ IDEA.

• Arend is fully constructive. The main library arend-lib: constructive mathematics

(the largest part), synthetic homotopy theory, theoretical computer science.

• Near future: support for a version of directed HoTT.

4

Arend at a Glance

• The development of Arend started in 2015 at JetBrains Research.

• The type theory of Arend is based on a mild extension of MLTT with the primitive
interval type I (HoTT-I).

• With I, HITs are defined as ordinary inductive types with conditions.

• Arend supports a powerful system of records and classes with partial

implementations and anonymous extensions.

• Arend has built-in type for arrays (= vectors+lists+({0, . . . , n} → A)).

• A rich tooling for Arend is provided by a plugin for IntelliJ IDEA.

• Arend is fully constructive. The main library arend-lib: constructive mathematics

(the largest part), synthetic homotopy theory, theoretical computer science.

• Near future: support for a version of directed HoTT.

4

Arend at a Glance

• The development of Arend started in 2015 at JetBrains Research.

• The type theory of Arend is based on a mild extension of MLTT with the primitive
interval type I (HoTT-I).

• With I, HITs are defined as ordinary inductive types with conditions.

• Arend supports a powerful system of records and classes with partial

implementations and anonymous extensions.

• Arend has built-in type for arrays (= vectors+lists+({0, . . . , n} → A)).

• A rich tooling for Arend is provided by a plugin for IntelliJ IDEA.

• Arend is fully constructive. The main library arend-lib: constructive mathematics

(the largest part), synthetic homotopy theory, theoretical computer science.

• Near future: support for a version of directed HoTT.

4

Arend at a Glance

• The development of Arend started in 2015 at JetBrains Research.

• The type theory of Arend is based on a mild extension of MLTT with the primitive
interval type I (HoTT-I).

• With I, HITs are defined as ordinary inductive types with conditions.

• Arend supports a powerful system of records and classes with partial

implementations and anonymous extensions.

• Arend has built-in type for arrays (= vectors+lists+({0, . . . , n} → A)).

• A rich tooling for Arend is provided by a plugin for IntelliJ IDEA.

• Arend is fully constructive. The main library arend-lib: constructive mathematics

(the largest part), synthetic homotopy theory, theoretical computer science.

• Near future: support for a version of directed HoTT.

4

HoTT-I (Prelude.ard, the interval)

• The interval type:

\data I | left | right

• Operation coe for transport between fibers over I (eliminator for I):

\func coe (A : I -> \Type) (a : A left) (i : I) : A i

\elim i -- pattern matching on i

-- just in Prelude.ard (not allowed in general)

| left => a

• The (almost) only computational rules for coe:

coe A a left => a

coe (\lam i => B) a j => a -- if i is not in FV(B)

5

HoTT-I (Prelude.ard, the interval)

• The interval type:

\data I | left | right

• Operation coe for transport between fibers over I (eliminator for I):

\func coe (A : I -> \Type) (a : A left) (i : I) : A i

\elim i -- pattern matching on i

-- just in Prelude.ard (not allowed in general)

| left => a

• The (almost) only computational rules for coe:

coe A a left => a

coe (\lam i => B) a j => a -- if i is not in FV(B)

5

HoTT-I (Prelude.ard, the interval)

• The interval type:

\data I | left | right

• Operation coe for transport between fibers over I (eliminator for I):

\func coe (A : I -> \Type) (a : A left) (i : I) : A i

\elim i -- pattern matching on i

-- just in Prelude.ard (not allowed in general)

| left => a

• The (almost) only computational rules for coe:

coe A a left => a

coe (\lam i => B) a j => a -- if i is not in FV(B)

5

HoTT-I (Prelude.ard, the path/equality type)

• The path/equality type, the type of functions I -> A with fixed endpoints:

\data Path (A : I -> \Type) (a : A left) (a’ : A right)

| path (\Pi (i : I) -> A i)

-- in ’path f’, ’f left/right ’ must eval to a/a’

-- infix version for non -dependent A

\func \infix 1 = {A : \Type} (a a’ : A)

=> Path (\lam _ => A) a a’

• Taking a point on a path at i : I:

\func \infixl 9 @ {A : I -> \Type} {a : A left}

{a’ : A right} (p : Path A a a’) (i : I) : A i \elim p, i

| path f, i => f i

| _, left => a | _, right => a’

6

HoTT-I (Prelude.ard, the path/equality type)

• The path/equality type, the type of functions I -> A with fixed endpoints:

\data Path (A : I -> \Type) (a : A left) (a’ : A right)

| path (\Pi (i : I) -> A i)

-- in ’path f’, ’f left/right ’ must eval to a/a’

-- infix version for non -dependent A

\func \infix 1 = {A : \Type} (a a’ : A)

=> Path (\lam _ => A) a a’

• Taking a point on a path at i : I:

\func \infixl 9 @ {A : I -> \Type} {a : A left}

{a’ : A right} (p : Path A a a’) (i : I) : A i \elim p, i

| path f, i => f i

| _, left => a | _, right => a’

6

HoTT-I (Prelude.ard, univalence)

• The univalence axiom represented by function iso:

\func iso {A B : \Type} (f : A -> B) (g : B -> A)

(p : \Pi (x : A) -> g (f x) = x)

(q : \Pi (y : B) -> f (g y) = y) (i : I) : \Type

\elim i

| left => A

| right => B

• Computational rule for coe:

coe (\lam i => iso A B f g p q i) a0 right => f a0

-- if i not in FV(A, B, f, g, p, q)

7

HoTT-I (Prelude.ard, univalence)

• The univalence axiom represented by function iso:

\func iso {A B : \Type} (f : A -> B) (g : B -> A)

(p : \Pi (x : A) -> g (f x) = x)

(q : \Pi (y : B) -> f (g y) = y) (i : I) : \Type

\elim i

| left => A

| right => B

• Computational rule for coe:

coe (\lam i => iso A B f g p q i) a0 right => f a0

-- if i not in FV(A, B, f, g, p, q)

7

Examples

• Reflexivity of equality (Prelude.ard):

\cons idp {A : \Type} {a : A} => path (\lam _ => a)

• Function extensionality, pmap and transport:

\func funext {A : \Type} (B : A -> \Type)

(f g : \Pi (x : A) -> B x)

(p : \Pi (x : A) -> f x = g x) : f = g

=> path(\lam i => \lam x => p @ i)

\func pmap {A B : \Type} (f : A -> B) {a a’ : A}

(p : a = a’) : f a = f a’

=> path (\lam i => f (p @ i))

\func transport {A : \Type} (B : A -> \Type)

{a a’ : A} (p : a = a’) (b : B a) : B a’

=> coe (\lam i => B (p @ i)) b right

8

Examples

• Reflexivity of equality (Prelude.ard):

\cons idp {A : \Type} {a : A} => path (\lam _ => a)

• Function extensionality, pmap and transport:

\func funext {A : \Type} (B : A -> \Type)

(f g : \Pi (x : A) -> B x)

(p : \Pi (x : A) -> f x = g x) : f = g

=> path(\lam i => \lam x => p @ i)

\func pmap {A B : \Type} (f : A -> B) {a a’ : A}

(p : a = a’) : f a = f a’

=> path (\lam i => f (p @ i))

\func transport {A : \Type} (B : A -> \Type)

{a a’ : A} (p : a = a’) (b : B a) : B a’

=> coe (\lam i => B (p @ i)) b right

8

Examples

• Reflexivity of equality (Prelude.ard):

\cons idp {A : \Type} {a : A} => path (\lam _ => a)

• Function extensionality, pmap and transport:

\func funext {A : \Type} (B : A -> \Type)

(f g : \Pi (x : A) -> B x)

(p : \Pi (x : A) -> f x = g x) : f = g

=> path(\lam i => \lam x => p @ i)

\func pmap {A B : \Type} (f : A -> B) {a a’ : A}

(p : a = a’) : f a = f a’

=> path (\lam i => f (p @ i))

\func transport {A : \Type} (B : A -> \Type)

{a a’ : A} (p : a = a’) (b : B a) : B a’

=> coe (\lam i => B (p @ i)) b right

8

Examples

• Reflexivity of equality (Prelude.ard):

\cons idp {A : \Type} {a : A} => path (\lam _ => a)

• Function extensionality, pmap and transport:

\func funext {A : \Type} (B : A -> \Type)

(f g : \Pi (x : A) -> B x)

(p : \Pi (x : A) -> f x = g x) : f = g

=> path(\lam i => \lam x => p @ i)

\func pmap {A B : \Type} (f : A -> B) {a a’ : A}

(p : a = a’) : f a = f a’

=> path (\lam i => f (p @ i))

\func transport {A : \Type} (B : A -> \Type)

{a a’ : A} (p : a = a’) (b : B a) : B a’

=> coe (\lam i => B (p @ i)) b right 8

Eliminator J

• Eliminator J for Path A a a’ can be derived using coe:

\func J {A : \Type} {a : A}

(B : \Pi (a’ : A) -> a = a’ -> \Type)

(b : B a idp) {a’ : A} (p : a = a’) : B a’ p

=> coe (\lam i => B (p @ i) (psqueeze p i)) b right

\func psqueeze {A : \Type} {a a’ : A} (p : a = a’) (i : I)

: a = p @ i => path (p @ I.squeeze i __)

-- \func squeeze (i j : I) : I is from Prelude.ard

• Standard computational rules hold for J (this was an issue for CTTs).

9

Pattern matching on idp

• Arend supports pattern matching on idp (equivalent to J):

\func Jl {A : \Type} {a : A}

(B : \Pi (a’ : A) -> a = a’ -> \Type)

(b : B a idp) {a’ : A} (p : a = a’) : B a’ p

\elim p

| idp => b

• Formalization of the proof of generalized Blakers-Massey theorem in arend-lib

would be next to infeasible without it.

10

Path algebra

• Basic operations on paths are defined via PM on idp:

\func inv {A : \Type} {a a’ : A} (p : a = a’) : a’ = a

\elim p

| idp => idp

\func \infixr 9 *> {A : \Type} {a a’ a’’ : A} (p : a = a’)

(q : a’ = a’’) : a = a’’ \elim q

| idp => p

• A number of very useful computational reductions hold:

pmap id => id, pmap (f o g) => pmap f o pmap g,

funext (funextInv p) => p, funextInv (funext p) => p

11

Inductive types with conditions

• Example: the type Int of integers (Prelude.ard).

\data Int

| \coerce pos Nat

| neg Nat \with { zero => pos zero } -- cond - PM on args

• The condition makes neg zero evaluate to pos zero. Elimination/PM must

respect this.

• This allows to define HITs (using I):

\data Sphere1

| base1

| loop (i : I) : Sphere1

\with { | left => base1 | right => base1 }

12

Inductive types with conditions

• Example: the type Int of integers (Prelude.ard).

\data Int

| \coerce pos Nat

| neg Nat \with { zero => pos zero } -- cond - PM on args

• The condition makes neg zero evaluate to pos zero. Elimination/PM must

respect this.

• This allows to define HITs (using I):

\data Sphere1

| base1

| loop (i : I) : Sphere1

\with { | left => base1 | right => base1 }

12

Truncations

• Propositional truncation TruncP (A : \Type) can be defined as a HIT.

\data TruncP (A : \Type)

| inP A

| truncP (a a’ : TruncP A) : a = a’ -- syntactic sugar

\where {

\use \level levelProp {A : \Type} (a a’ : TruncP A)

: a = a’ => path (truncP a a’)

}

• \use \level ensures typing TruncP (A : \Type) : \Prop.

• In Arend truncations can be defined entirely without HITs:

\truncated \data TruncP (A : \Type) : \Prop

| inP A -- elimination restricted to h-propositions

13

Truncations

• Propositional truncation TruncP (A : \Type) can be defined as a HIT.

\data TruncP (A : \Type)

| inP A

| truncP (a a’ : TruncP A) : a = a’ -- syntactic sugar

\where {

\use \level levelProp {A : \Type} (a a’ : TruncP A)

: a = a’ => path (truncP a a’)

}

• \use \level ensures typing TruncP (A : \Type) : \Prop.

• In Arend truncations can be defined entirely without HITs:

\truncated \data TruncP (A : \Type) : \Prop

| inP A -- elimination restricted to h-propositions

13

Truncations

• Propositional truncation TruncP (A : \Type) can be defined as a HIT.

\data TruncP (A : \Type)

| inP A

| truncP (a a’ : TruncP A) : a = a’ -- syntactic sugar

\where {

\use \level levelProp {A : \Type} (a a’ : TruncP A)

: a = a’ => path (truncP a a’)

}

• \use \level ensures typing TruncP (A : \Type) : \Prop.

• In Arend truncations can be defined entirely without HITs:

\truncated \data TruncP (A : \Type) : \Prop

| inP A -- elimination restricted to h-propositions

13

Universes \Prop and \Set

• Analogous constructs work for \Set and universes of higher homotopy level.

• Universes \Prop and \Set of h-propositions and h-sets explicitly delineate

HoTT’s set-theoretic fragment in Arend.

• Definitions can be made polymorphic on the homotopy level.

14

Partial implementations for classes and records

\class Semiring \extends AbMonoid , Monoid {

| ldistr {x y z : E} : x * (y + z) = x * y + x * z

| rdistr {x y z : E} : (x + y) * z = x * z + y * z

| zro_*-left {x : E} : zro * x = zro

| zro_*-right {x : E} : x * zro = zro

}

\class Ring \extends Semiring , AbGroup { -- AbGroup <- AbMnoid

| zro_*-left {x} => -- ... : proof of 0 * x = 0 using

-- invertibility wrt ’+’

| zro_*-right {x} => -- ... : proof of x * 0 = 0 using

-- invertibility wrt ’+’

}

Here Semiring extends AbMonoid and Monoid which are additive commutative and

multiplicative monoidal structures on the same carrier.
15

Another example: tight apartness relation x#y.

• x # y is constructively better behaved variant of inequality Not (x = y) since it

satisfies the tightness condition Not (x # y) -> x = y.

• If we extend the type of sets with relation # with a group structure, the original

x # y can be implemented using z # 0.

\class AddGroupWith# \extends AddGroup , Set_#

| \fix 8 #0 : E -> \Prop

| #0-zro : Not (zro ‘#0)

| #0-negative {x : E} : x ‘#0 -> negative x ‘#0

| #0-+ {x y : E} : (x + y) ‘#0 -> x ‘#0 || y ‘#0

| #0-tight {x : E} : Not (x ‘#0) -> x = zro

| # x y => (x - y) ‘#0

-- we omit implementations of properties of x # y

16

Another example: tight apartness relation x#y.

• x # y is constructively better behaved variant of inequality Not (x = y) since it

satisfies the tightness condition Not (x # y) -> x = y.

• If we extend the type of sets with relation # with a group structure, the original

x # y can be implemented using z # 0.

\class AddGroupWith# \extends AddGroup , Set_#

| \fix 8 #0 : E -> \Prop

| #0-zro : Not (zro ‘#0)

| #0-negative {x : E} : x ‘#0 -> negative x ‘#0

| #0-+ {x y : E} : (x + y) ‘#0 -> x ‘#0 || y ‘#0

| #0-tight {x : E} : Not (x ‘#0) -> x = zro

| # x y => (x - y) ‘#0

-- we omit implementations of properties of x # y

16

Class system in Arend: summary

• Anonymous extensions can be created on the fly:

\func SemiringsOnNat : \Set => Semiring { E => Nat }

-- or simply ’=> Semiring Nat ’

• Manifest fields f => a, used for partial implementations, erase distinction

between fields and parameters of classes.

• Partial implementations allow for flexible hierarchies of bundled or semi-bundled

definitions.

• Hierarchy Viewer in IDE allows for convenient navigation through hierarchy.

17

Arrays

• The type DArray is defined in Prelude.ard as a record:

\record DArray {len : Nat} (A : Fin len -> \Type)

(\ coerce at : \Pi (j : Fin len) -> A j)

\func Array (A : \Type) => DArray { | A _ => A }

• At the same time functions from DArray can be defined by pattern matching.

\cons nil {A : Fin 0 -> \Type} : DArray A \cowith

| at => \case __

\cons \infixr 5 :: {n : Nat} {A : Fin (suc n) -> \Type}

(a : A 0) (l : DArray (\lam j => A (suc j))) : DArray A

\cowith

| at => \case \elim __ \with {

| 0 => a | suc j => l j }

18

Motivation

• Consider the type of terms f v1 . . . va(f), where F - set of function symbols {f }, a
- their arities, Vector A n - the standard data type of vectors of length n:

\data Term (F : \Set) (a : F -> Nat)

| fun (f : F) (v : Vector (Term F a) (a f))

• Assume we want to define a function G : Term -> Term by induction on terms,

e.g. a substitution, and prove something about it. What kind of elimination/PM

do we need?

• For example, in Coq the generated induction principle for Term in insufficient.

One has to prove a useful one by hand.

19

Using Array

• This kind of issues are completely resolved by DArray/Array.

\data Term (F : \Set) (a : F -> Nat)

| fun (f : F) (v : Array (Term F a) (a f))

\func G {F : \Set} {a : F -> Nat} (t : Term F a) \elim t

| fun f v => fun f (\lam i => G (v i))

-- ’v’ is treated as a function Fun (a f) -> Term F a

• If one uses functions Fun (a f) -> Term F a instead, one would run into

different problems. For example, if x1 computes to x2 and y1 computes to y2,

than f x1 y_1 won’t compute to f x2 y_2 (and Array and Vector have such

computational rule).

20

Overview of arend-lib: constructive mathematics

1. Algebra. Schemes via locally ringed locales; PID domains and the proof that they

are 1-dimensional Smith domains; splitting fields of polynomials and algebraic

closure for countable, decidable fields; connection between zero-dimensional and

integral extensions; matrices over commutative rings, determinants, characteristic

polynomials, Cayley-Hamilton theorem; linear algebra over Smith domains;

integral ring extensions; polynomials over one or several variables; Nakayama’s

lemma; natural, integer, rational, real and complex numbers and various

structures on them.

2. Topology and analysis. Topological spaces, locales, uniform spaces, completion

of spaces; derivative over topological rings; directed limits for sequences and

functions; series and power series.

3. Category theory. Categories, functors, adjoint functors, Kan extensions,

(co)limits; elementary topoi and Grothendieck topoi.
21

Overview of arend-lib: synthetic homotopy theory and CS

1. Synthetic homotopy theory. Eckmann-Hilton argument; K1(G); Hopf fibration;

localization of universes and modalities; Generalized Blakers-Massey theorem.

This branch is planned to be revived after directed HoTT language extension is

implemented in Arend.

2. Computer science. High-order term rewriting systems. Programming Language

Foundations in Arend.

22

Some references

• IntelliJ IDEA plugin features are nicely described (with demonstrations) in

Documentation section of Arend site (https://arend-lang.github.io/).

• There is also a link to a paper draft on Arend and arend-lib (some parts are

missing, but will be finished soon).

https://arend-lang.github.io/assets/lang-paper.pdf

23

