Easy Parametricity

Jem Lord Department of Computer Science and Technology University of Cambridge

16th April 2025

- 1. Parametricity?
- 2. Models of the Axiom
- 3. The Main Theorem
- 4. How To Get Parametricity (Proof of Main Theorem)
- 5. Scope of the Technique
- 6. Bonus Slides

(For slides that didn't fit anywhere or that there wasn't time for.)

Suitably uniformly defined families of functions $u_X : FX \to GX$ should be "nice" and satisfy a corresponding equation like naturality.

Suitably uniformly defined families of functions $u_X : FX \to GX$ should be "nice" and satisfy a corresponding equation like naturality.

e.g. if $\alpha : \prod_{X:\mathcal{U}} (X \times X) \to X$ is suitably uniformly defined then we would hope that either $\alpha = \pi_0$ or $\alpha = \pi_1$. if $\beta : \prod_{X:\mathcal{U}} (X \to X) \to (X \to X)$ is suitably uniformly defined then we would hope that $\beta = -^{\circ n}$ for some $n : \mathbb{N}$. Suitably uniformly defined families of functions $u_X : FX \to GX$ should be "nice" and satisfy a corresponding equation like naturality.

e.g. if $\alpha : \prod_{X:\mathcal{U}} (X \times X) \to X$ is suitably uniformly defined then we would hope that either $\alpha = \pi_0$ or $\alpha = \pi_1$. if $\beta : \prod_{X:\mathcal{U}} (X \to X) \to (X \to X)$ is suitably uniformly defined then we would hope that $\beta = -^{\circ n}$ for some $n : \mathbb{N}$.

Today, we're going to look at conditions on a universe \mathcal{U} which ensure *all* families are appropriately parametric.

For A, B types, write $A \perp B$ for the statement that $a \mapsto \lambda_{-}a : A \to (B \to A)$ is an equivalence.

Axiom $(PA_{\mathcal{U}})$

 ${\mathcal U}$ is a universe; for any type A : ${\mathcal U},\,{\mathcal U}\perp A$ i.e. the map

$$a\mapsto \lambda_{-}.a:A o \prod_{X:\mathcal{U}}A$$

is an equivalence.

Slogan: "All functions from \mathcal{U} to a \mathcal{U} -small type are constant."

Axiom ($PA_{\mathcal{U}}$)

 ${\mathcal U}$ is a universe; for any type A : ${\mathcal U},\,{\mathcal U}\perp$ A i.e. the map

$$\mathsf{a}\mapsto\lambda_{ extsf{--}}.\mathsf{a}:\mathsf{A} o\prod_{\mathsf{X}:\mathcal{U}}\mathsf{A}$$

is an equivalence.

Slogan: "All functions from ${\mathcal U}$ to a ${\mathcal U}\text{-small type are constant."}$

We can think of this as similar to the instance of parametricity which states that

$$a\mapsto \lambda_{-}.\lambda f.f(a):A
ightarrow \prod_{X:\mathcal{U}}(A
ightarrow X)
ightarrow X$$

is an equivalence.

Axiom ($PA_{\mathcal{U}}$)

 ${\mathcal U}$ is a universe; for any type A : ${\mathcal U},\,{\mathcal U}\perp$ A i.e. the map

$$\mathsf{a}\mapsto\lambda_{ extsf{--}}.\mathsf{a}:\mathsf{A} o\prod_{\mathsf{X}:\mathcal{U}}\mathsf{A}$$

is an equivalence.

Slogan: "All functions from ${\mathcal U}$ to a ${\mathcal U}\text{-small type are constant."}$

It is equivalent to asking that there are unique diagonal fillers in squares like

Axiom ($PA_{\mathcal{U}}$)

 ${\mathcal U}$ is a universe; for any type A : ${\mathcal U},\,{\mathcal U}\perp$ A i.e. the map

$$\mathsf{a}\mapsto\lambda_{ extsf{--}}.\mathsf{a}:\mathsf{A} o\prod_{\mathsf{X}:\mathcal{U}}\mathsf{A}$$

is an equivalence.

Slogan: "All functions from ${\mathcal U}$ to a ${\mathcal U}\text{-small type are constant."}$

Or that for any $A: \mathcal{U}$ there are unique diagonal fillers in squares like

Axiom ($PA_{\mathcal{U}}$)

 ${\mathcal U}$ is a universe; for any type A : ${\mathcal U},\,{\mathcal U}\perp$ A i.e. the map

$$\mathsf{a}\mapsto\lambda_{-}.\mathsf{a}:\mathsf{A} o\prod_{\mathsf{X}:\mathcal{U}}\mathsf{A}$$

is an equivalence.

Slogan: "All functions from $\mathcal U$ to a $\mathcal U$ -small type are constant."

Or as some arcane relative of logical relations.

It expresses validity of the following: Let T be a \mathcal{U} -small type. Say that $t_0 \ R \ t_1$ iff there exist $\langle \tau_A \rangle_{A:\mathcal{U}} : T$ with $\tau_0 = t_0$ and $\tau_1 = t_1$. Then $t_0 \ R \ t_1$ implies $t_0 = t_1$. (Here a "relation" between $T_0, \ T_1 : \mathcal{U}$ would be a type family $\langle T'_A \rangle_{A:\mathcal{U}} : \mathcal{U}$ with $T'_0 = T_0$ and $T'_1 = T_1$.)

Axiom ($PA_{\mathcal{U}}$)

 $\mathcal U$ is a universe; for any type $A:\mathcal U,\,\mathcal U\perp A$ i.e. the map

$$\mathsf{a}\mapsto\lambda_{-}.\mathsf{a}:\mathsf{A} o\prod_{\mathsf{X}:\mathcal{U}}\mathsf{A}$$

is an equivalence.

Slogan: "All functions from ${\mathcal U}$ to a ${\mathcal U}\text{-small type are constant."}$

Theorem (Main)

Assume $PA_{\mathcal{U}}$.

Let C be a $\mathcal U\text{-complete univalent category and }D$ be a locally $\mathcal U\text{-small category.}$

Theorem (Main)

Assume $PA_{\mathcal{U}}$.

Let C be a U-complete univalent category and D be a locally U-small category.

- (a) Let $F, G : \mathbf{C} \to \mathbf{D}$ be functors and let $\alpha : \prod_{X:Ob(\mathbf{C})} \mathbf{D}(F(X), G(X))$. Then α is natural.
- (b) Let $F, G : \mathbb{C}^{\text{op}} \times \mathbb{C} \to \mathbb{D}$ be bifunctors and let $\beta : \prod_{X:Ob(\mathbb{C})} \mathbb{D}(F(X,X), G(X,X))$. Then β is dinatural.
- (c) Let $F : \mathbf{C} \to \mathbf{D}$ be a function on objects and morphisms which respects sources, targets and identity morphisms. Then F respects composition, so is a functor.

Small diversion! Might help for intuition; you can leave this for later if not.

- Let \mathcal{V} be a univalent universe and $\Diamond: \mathcal{V} \to \mathcal{V}$ be an (idempotent monadic) modality on \mathcal{V} .
- Write \mathcal{V}_{\Diamond} for the reflective subuniverse of \Diamond -modal types. \mathcal{V}_{\Diamond} has 1, \times , \rightarrow , Σ , Π and = but may fail to have HITs.

- Let V be a univalent universe and ◊ : V → V be an (idempotent monadic) modality on V.
- Write \mathcal{V}_{\Diamond} for the reflective subuniverse of \Diamond -modal types. \mathcal{V}_{\Diamond} has 1, \times , \rightarrow , Σ , Π and = but may fail to have HITs.
- Suppose there is a type \mathbb{I} with $0_{\mathbb{I}}, 1_{\mathbb{I}} : \mathbb{I}, \ 0_{\mathbb{I}} \neq 1_{\mathbb{I}}$ and $\Diamond \mathbb{I} \cong 1$. (This is equivalent to the 'axiom of sufficient cohesion'.) Then $\mathsf{PA}_{\mathcal{V}_{\Diamond}}$.

- Let \mathcal{V} be a univalent universe and $\Diamond: \mathcal{V} \to \mathcal{V}$ be an (idempotent monadic) modality on \mathcal{V} .
- Write \mathcal{V}_{\Diamond} for the reflective subuniverse of \Diamond -modal types. \mathcal{V}_{\Diamond} has 1, \times , \rightarrow , Σ , Π and = but may fail to have HITs.
- Suppose there is a type $\mathbb I$ with $0_{\mathbb I}, 1_{\mathbb I}: \mathbb I, \ 0_{\mathbb I} \neq 1_{\mathbb I}$ and $\Diamond \mathbb I \cong 1$. (This is equivalent to the 'axiom of sufficient cohesion'.) Then $\mathsf{PA}_{\mathcal{V}_{\Diamond}}.$
- If \diamond is the shape modality left adjoint to the flat \flat modality of modal HoTT ($\diamond = \int \neg \flat$), then \mathcal{V}_{\diamond} has all discrete types including 0, 2, \mathbb{N} and (I think?) has HITs.

- In simplicial type theory, PA holds for the type of groupoids (those C with $[1] \perp C$).
- More generally, the subuniverse of discrete types in cohesive HoTT satisfies PA as soon as the axiom of sufficient cohesion (axiom C2) holds.
- The (internally defined) subuniverse of discrete types in the 1-toposes of cubical sets or simplicial sets satisfy PA.
- Similarly, in any stably locally connected (1-)topos (e.g. simplicial sets, cubical sets), PA is implied by the axiom of sufficient cohesion (axiom C2).
- The univalent universe ${\cal U}$ of modest types in the cubical assemblies model satisfies $\mathsf{PA}_{{\cal U}}.$
- The universe $\mathcal U$ of modest sets of a category of assemblies satisfies $\mathsf{PA}_{\mathcal U}$.

Theorem (Main)

Assume $PA_{\mathcal{U}}$.

Let C be a U-complete univalent category and D be a locally U-small category.

- (a) Let $F, G : \mathbf{C} \to \mathbf{D}$ be functors and let $\alpha : \prod_{X:Ob(\mathbf{C})} \mathbf{D}(F(X), G(X))$. Then α is natural.
- (b) Let $F, G : \mathbb{C}^{\text{op}} \times \mathbb{C} \to \mathbb{D}$ be bifunctors and let $\beta : \prod_{X:Ob(\mathbb{C})} \mathbb{D}(F(X,X), G(X,X))$. Then β is dinatural.
- (c) Let $F : \mathbf{C} \to \mathbf{D}$ be a function on objects and morphisms which respects sources, targets and identity morphisms. Then F respects composition, so is a functor.

Let **C** be a category and $A \xrightarrow{f} B$ be a morphism of **C**. We denote Fact(f) the type of factorisations of f:

Note that this is equivalently the fibre of f under $\circ : \mathbf{C}^{\bullet \to \bullet \to \bullet} \to \mathbf{C}^{\bullet \to \bullet}$.

Let **C** be a category and $A \xrightarrow{f} B$ be a morphism of **C**. We denote Fact(f) the type of factorisations of f:

Note that this is equivalently the fibre of f under $\circ : \mathbf{C}^{\bullet \to \bullet \to \bullet} \to \mathbf{C}^{\bullet \to \bullet}$.

Amongst Fact(f) we in particular have the factorisations (f, id) and (id, f):

$$A \xrightarrow{f} B \xrightarrow{id} B A \xrightarrow{id} f \xrightarrow{f} B$$

A category **C** is $\perp \in \mathcal{U}$ -tame iff for any $A : \mathcal{U}$, $Fact(f) \perp A$ i.e. all functions from Fact(f) to a \mathcal{U} -small type are constant.

Theorem (A)

Assume PA_{U} . Then any univalent category with limits of shape p * 1 for all propositions p is $\perp \in U$ -tame.

Theorem (B)

Let **C** be a $\perp \in \mathcal{U}$ -tame category and **D** be a locally \mathcal{U} -small category. Then Theorem Main(a,b,c) hold.

Theorem (B)

Let **C** be a $\perp \in \mathcal{U}$ -tame category and **D** be a locally \mathcal{U} -small category. Then Theorem 1(a,b,c) hold.

- B.1 Massage the goal identity into the form M(f, id) = M(id, f) for some function $M : Fact(f) \rightarrow hom(c, d)$.
- B.2 By $\perp \in \mathcal{U}$ -tameness of **C** and \mathcal{U} -smallness of hom(c, d), M(f, id) = M(id, f) as desired.

Proof of B.1(a)

Let F, G, α be as in hypotheses of Theorem 1(a). For any morphism f in **C**, we wish to show that $\alpha_B \circ Ff = Gf \circ \alpha_A$.

Goal: Outer hexagon commutes.

Construct M_f : Fact $(f) \rightarrow \hom_{\mathbf{D}}(FA, GB)$ to interpolate.

Proof of B.1(a)

Hence it suffices to show that for all f, $M_f(f, id) = M_f(id, f)$.

Theorem (A)

Assume PA_{U} . Then any univalent category with limits of shape p * 1 for all propositions p is $\perp \in U$ -tame.

- A.1 Show (using univalence and completeness of **C**) that for any f there is a function $F_f : \mathcal{U} \to \operatorname{Fact}(f)$ with $F_f(\mathbf{0}) = (f, \operatorname{id})$ and $F_f(\mathbf{1}) = (\operatorname{id}, f)$.
- A.2 For any g, any $M : \operatorname{Fact}(g) \to A$ and any factorisation (f, h) of g, let $M' : \operatorname{Fact}(f) \to A$ be $M'(f_l, f_r) = M(f_l, h \circ f_r)$. Then by $\operatorname{PA}_{\mathcal{U}}$, $M'F_f$ is constant, so $M(f, h \circ \operatorname{id}) = M'F_f\mathbf{0} = M'F_f\mathbf{1} = M(\operatorname{id}, h \circ f)$ as desired.

Let $f : X \to Y$ be a morphism of **C**. We now want to show (using univalence and completeness of **C**) that there is a function $F : \mathcal{U} \to Fact(f)$ with $F(\mathbf{0}) = (f, id)$ and $F(\mathbf{1}) = (id, f)$.

Let $f : X \to Y$ be a morphism of **C**. We now want to show (using univalence and completeness of **C**) that there is a function $F : \mathcal{U} \to Fact(f)$ with $F(\mathbf{0}) = (f, id)$ and $F(\mathbf{1}) = (id, f)$.

Hence

we want to construct an interpolating factorisation $F(S) = X \xrightarrow{I_S} M_S \xrightarrow{r_S} Y$ dependent on a type S : U.

By univalence

of **C**, we only need isomorphisms $F(\mathbf{0}) \cong (f, \mathrm{id})$ and $F(\mathbf{1}) \cong (\mathrm{id}, f)$.

For S a category, let S * 1 be the result of freely adjoining a terminal object to S. (Pictured are S = 0, 1, 2, but only $S \in hProp$ will be used.)

For S a category, let S * 1 be the result of freely adjoining a terminal object to S. (Pictured are S = 0, 1, 2, but only $S \in hProp$ will be used.) Let $J_S : (S * 1) \rightarrow \mathbb{C}$ be the diagram for a wide pullback of S copies of $f : X \rightarrow Y$.

For S a category, let S * 1 be the result of freely adjoining a terminal object to S. (Pictured are S = 0, 1, 2, but only $S \in hProp$ will be used.) Let $J_S : (S * 1) \rightarrow \mathbf{C}$ be the diagram for a wide pullback of S copies of $f : X \rightarrow Y$. The J_S admit cones from X.

For S a category, let S * 1 be the result of freely adjoining a terminal object to S. (Pictured are S = 0, 1, 2, but only $S \in hProp$ will be used.) Let $J_S : (S * 1) \rightarrow \mathbb{C}$ be the diagram for a wide pullback of S copies of $f : X \rightarrow Y$. The J_S admit cones from X.

We shall take the limit of $J_S : (S * 1) \rightarrow \mathbf{C}$.

"That's nice, but I'm a *homotopy* type theorist."

Fortunately, we didn't really use much of that the category C was a 1-category – the same techniques work for higher categories we write down.

Take a *wild category* to be defined like a category, but without restricting the homotopy types of objects or morphisms, removing associativity, and adding that $idl_{id} = idr_{id} : (id \circ id) = id$.

Theorem

If **C** is a locally \mathcal{U} -small $\perp \in \mathcal{U}$ -tame wild category, then **C** has an associator α , and moreover α satisfies the pentagon equation.

Theorem

If C is a locally U-small $\perp \in U$ -tame wild category, then so is C^{\rightarrow} .

"That's nice, but I'm not a homotopy type theorist."

What about versions of the axiom for non-univalent universes?

"That's nice, but I'm not a homotopy type theorist."

What about versions of the axiom for non-univalent universes? Well, *we never assumed univalence*.

What about versions of the axiom for non-univalent universes? Well, we never assumed univalence.

Call a category **C** glueable if for any proposition p, object A and p-indexed family $(B_u, i_u : A \cong B_u)_{u:p}$ of objects isomorphic to A, there's a specified object and isomorphism $(B', i' : A \cong B')$ which if u : p equals $(B_u, i_u : A \cong B_u)$.

Theorem (A')

Assume PA_{U} . Then any glueable category with limits of shape p * 1 for all propositions p is $\perp \in U$ -tame.

When **Set** is glueable, so are plenty of other categories, such as presheaf categories and their replete full subcategories.

What about versions of the axiom for non-univalent universes? Well, we never assumed univalence.

Call a category **C** glueable if for any proposition p, object A and p-indexed family $(B_u, i_u : A \cong B_u)_{u:p}$ of objects isomorphic to A, there's a specified object and isomorphism $(B', i' : A \cong B')$ which if u : p equals $(B_u, i_u : A \cong B_u)$.

Theorem (A')

Assume PA_{U} . Then any glueable category with limits of shape p * 1 for all propositions p is $\perp \in U$ -tame.

When **Set** is glueable, so are plenty of other categories, such as presheaf categories and their replete full subcategories.

All models on the 'Some Models' slide have their category of sets glueable.

Lemma

 $PA_{\mathcal{U}}$ implies \mathcal{U} doesn't contain its subobject classifier. (Hence LEM_{\mathcal{U}} also fails.)

Explicitly, we take $SC_{\mathcal{U}}$ to be the statement that there is $\Omega : \mathcal{U}$ and some $i : hProp_{\mathcal{U}} / \leftrightarrow \cong \Omega$. (The quotient is only necessary in absence of univalence.)

Lemma

 $PA_{\mathcal{U}}$ implies \mathcal{U} doesn't contain its subobject classifier. (Hence LEM_{\mathcal{U}} also fails.)

Explicitly, we take $SC_{\mathcal{U}}$ to be the statement that there is $\Omega : \mathcal{U}$ and some $i : hProp_{\mathcal{U}} / \leftrightarrow \cong \Omega$. (The quotient is only necessary in absence of univalence.)

Proof.

Suppose (by SC_{*U*}) there is $\Omega : \mathcal{U}$ such that $i : h \operatorname{Prop}_{\mathcal{U}} / \leftrightarrow \cong \Omega$. Define $f : \prod_{X:\mathcal{U}} \Omega$ as $f(X) = i(||X||_{-1})$. Then $f(\mathbf{0}) = i([\mathbf{0}]) \neq i([\mathbf{1}]) = f(\mathbf{1})$. f is nonconstant, contradicting PA_{*U*}.

Lemma

 $PA_{\mathcal{U}}$ implies \mathcal{U} doesn't contain its subobject classifier. (Hence $LEM_{\mathcal{U}}$ also fails.)

Explicitly, we take $SC_{\mathcal{U}}$ to be the statement that there is $\Omega : \mathcal{U}$ and some $i : hProp_{\mathcal{U}} / \leftrightarrow \cong \Omega$. (The quotient is only necessary in absence of univalence.)

Proof.

Suppose (by SC_{*U*}) there is $\Omega : \mathcal{U}$ such that $i : h \operatorname{Prop}_{\mathcal{U}} / \leftrightarrow \cong \Omega$. Define $f : \prod_{X:\mathcal{U}} \Omega$ as $f(X) = i(\|X\|_{-1})$. Then $f(\mathbf{0}) = i([\mathbf{0}]) \neq i([\mathbf{1}]) = f(\mathbf{1})$. f is nonconstant, contradicting PA_{*U*}.

Despite this failure, it's still possible to have a subuniverse $S \subseteq U$ for which LEM_S (hence SC_S) holds and a superuniverse $\mathcal{V} \supseteq U$ for which SC_V holds: PA remains useful for reasoning about situations with SC.

The End

Questions?

Let F, G, β be as in hypotheses of Theorem Main(b). Goal: For any $A \xrightarrow{f} B$, the outer diamond commutes. Construct M_f : Fact $(f) \rightarrow \hom_{D}(F(B, A), G(A, B))$ to interpolate.

Proof of B.1(c)

Goal: Outer diamond commutes. Construct M_f : Fact $(f) \rightarrow hom_D(FA, FC)$ to interpolate.

An Impredicative Univalent Universe

Let \mathcal{U} be an univalent universe which has all (possibly \mathcal{U} -large) products.

Proposition

If
$$A : U$$
 satisfies $\forall a, b, \neg \neg (a = b) \rightarrow (a = b)$, then $a \mapsto \lambda_{-}a : A \rightarrow (U \rightarrow A)$ is an equivalence.

Proof sketch.

Let $f: \mathcal{U} \to A$ and assume $f(0) \neq f(1)$. Denote $\operatorname{Prop}_{\neg \neg} := \{a : \operatorname{Prop} \mid a = \neg \neg a\}$. Then $f: \operatorname{Prop}_{\neg \neg} \hookrightarrow A$ is a split embedding, so $\operatorname{Prop}_{\neg \neg}$ is essentially \mathcal{U} -small. By large completeness, $\operatorname{Prop}_{\neg \neg}^{-} : \operatorname{Set} \to \operatorname{Set}$ has an initial algebra $A \cong \operatorname{Prop}_{\neg \neg}^{A}$, contradicting Cantor's diagonalisation argument. Hence f(0) = f(1). Similarly, $f(1) = f(X^0) = f(X^1) = f(X)$.

Conjecture

 $\mathsf{PA}_{\mathcal{U}}$

Dinatural transformations compose?

For a $\perp \in \mathcal{U}$ -tame category **C** and locally \mathcal{U} -small category **D**, dinatural transformations $F \xrightarrow{\langle \alpha_c \rangle_c} G \xrightarrow{\langle \beta_c \rangle_c} H$ between functors $F, G, H : \mathbf{C}^{\mathrm{op}} \times \mathbf{C} \to \mathbf{D}$ compose to $F \xrightarrow{\langle \beta_c \circ \alpha_c \rangle_c} H$.

This is *not* due to the related notion of "strong diantural transformation", a sufficient condition on β for $\beta \circ -$ to preserve dinaturality.

Indeed, let $F : \mathbf{Set}^{\mathrm{op}} \times \mathbf{Set} \to \mathbf{Set}$ be defined by $F(B, A) = (A \to B) \to 2$, and $\alpha_X : \hom_{\mathbf{Set}}((X \to X) \to 2, 2)$ be given by $\alpha_X(f) = f(\mathrm{id}_X)$.

 α is dinatural but not strong dinatural: the left square commutes but the hexagon doesn't.

We only need to check the endpoints are always equal:

Lemma

Let **C** be a category such that for any morphism f, A : U, and $M : Fact(f) \to A$, M(id, f) = M(f, id). Then **C** is $\perp \in U$ -tame.

Proof.

For any g, any N: Fact $(g) \to A$ and any factorisation (f, h) of g, let M: Fact $(f) \to A$ be $M(f_l, f_r) = N(f_l, h \circ f_r)$. M is constant by assumption, so $N(f, h) = N(f, h \circ id) = N(id, h \circ f) = N(id, g)$. Hence N is constant.