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Parametricity?

Suitably uniformly defined families of functions uX : FX → GX should be “nice” and
satisfy a corresponding equation like naturality.

e.g. if α :
∏

X :U (X × X ) → X is suitably uniformly defined then we would hope that
either α = π0 or α = π1.
if β :

∏
X :U (X → X ) → (X → X ) is suitably uniformly defined then we would hope that

β = −◦n for some n : N.

Today, we’re going to look at conditions on a universe U which ensure all families are
appropriately parametric.
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The Parametricity Axiom

For A,B types, write A ⊥ B for the statement that a 7→ λ .a : A → (B → A) is an
equivalence.

Axiom (PAU)

U is a universe; for any type A : U , U ⊥ A i.e. the map

a 7→ λ .a : A →
∏
X :U

A

is an equivalence.

Slogan: “All functions from U to a U-small type are constant.”
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U is a universe; for any type A : U , U ⊥ A i.e. the map

a 7→ λ .a : A →
∏
X :U

A

is an equivalence.

Slogan: “All functions from U to a U-small type are constant.”

We can think of this as similar to the instance of parametricity which states that

a 7→ λ .λf .f (a) : A →
∏
X :U

(A → X ) → X

is an equivalence.
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The Parametricity Axiom

Axiom (PAU)

U is a universe; for any type A : U , U ⊥ A i.e. the map

a 7→ λ .a : A →
∏
X :U

A

is an equivalence.

Slogan: “All functions from U to a U-small type are constant.”

It is equivalent to asking that there are unique diagonal fillers in squares like
U

1

∑
A:U A

U

! π0
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U is a universe; for any type A : U , U ⊥ A i.e. the map

a 7→ λ .a : A →
∏
X :U
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is an equivalence.

Slogan: “All functions from U to a U-small type are constant.”

Or that for any A : U there are unique diagonal fillers in squares like
U

1

A

1

! !

4 / 24



The Parametricity Axiom

Axiom (PAU)

U is a universe; for any type A : U , U ⊥ A i.e. the map

a 7→ λ .a : A →
∏
X :U

A

is an equivalence.

Slogan: “All functions from U to a U-small type are constant.”

Or as some arcane relative of logical relations.

It expresses validity of the following:
Let T be a U-small type.
Say that t0 R t1 iff there exist ⟨τA⟩A:U : T with τ0 = t0 and τ1 = t1.
Then t0 R t1 implies t0 = t1.
(Here a “relation” between T0,T1 : U would be a type family ⟨T ′

A⟩A:U : U with T ′
0 = T0 and T ′

1 = T1.)
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Main Theorem

Theorem (Main)

Assume PAU .
Let C be a U-complete univalent category and D be a locally U-small category.

(a) Let F ,G : C → D be functors and let α :
∏

X :Ob(C)D(F (X ),G (X )). Then α is
natural.

(b) Let F ,G : Cop × C → D be bifunctors and let β :
∏

X :Ob(C)D(F (X ,X ),G (X ,X )).
Then β is dinatural.

(c) Let F : C → D be a function on objects and morphisms which respects sources,
targets and identity morphisms. Then F respects composition, so is a functor.
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Models from Modalities

Small diversion! Might help for intuition; you can leave this for later if not.

• Let V be a univalent universe and ♢ : V → V be an (idempotent monadic) modality
on V.

• Write V♢ for the reflective subuniverse of ♢-modal types. V♢ has 1, ×, →, Σ, Π and
= but may fail to have HITs.

• Suppose there is a type I with 0I, 1I : I, 0I ̸= 1I and ♢I ∼= 1. (This is equivalent to
the ‘axiom of sufficient cohesion’.)
Then PAV♢ .

• If ♢ is the shape modality left adjoint to the flat ♭ modality of modal HoTT
(♢ =

∫
⊣ ♭), then V♢ has all discrete types including 0, 2,N and (I think?) has HITs.
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Some Models

• In simplicial type theory, PA holds for the type of groupoids (those C with [1] ⊥ C ).

• More generally, the subuniverse of discrete types in cohesive HoTT satisfies PA as
soon as the axiom of sufficient cohesion (axiom C2) holds.

• The (internally defined) subuniverse of discrete types in the 1-toposes of cubical sets
or simplicial sets satisfy PA.

• Similarly, in any stably locally connected (1-)topos (e.g. simplicial sets, cubical sets),
PA is implied by the axiom of sufficient cohesion (axiom C2).

• The univalent universe U of modest types in the cubical assemblies model satisfies
PAU .

• The universe U of modest sets of a category of assemblies satisfies PAU .
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Main Theorem

Theorem (Main)

Assume PAU .
Let C be a U-complete univalent category and D be a locally U-small category.

(a) Let F ,G : C → D be functors and let α :
∏

X :Ob(C)D(F (X ),G (X )). Then α is
natural.

(b) Let F ,G : Cop × C → D be bifunctors and let β :
∏

X :Ob(C)D(F (X ,X ),G (X ,X )).
Then β is dinatural.

(c) Let F : C → D be a function on objects and morphisms which respects sources,
targets and identity morphisms. Then F respects composition, so is a functor.
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Aside: factorisations

Let C be a category and A
f−→ B be a morphism of C. We denote Fact(f ) the type of

factorisations of f :

A

X

B

fl fr

f

Note that this is equivalently the fibre of f under ◦ : C•→•→• → C•→•.

Amongst Fact(f ) we in particular have the factorisations (f , id) and (id, f ):

A

B

B

f id

f
A

A

B

id f

f
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Main Theorem (but better)

A category C is ⊥∈U-tame iff for any A : U , Fact(f ) ⊥ A i.e. all functions from Fact(f )
to a U-small type are constant.

Theorem (A)

Assume PAU . Then any univalent category with limits of shape p ∗ 1 for all propositions p
is ⊥∈U-tame.

Theorem (B)

Let C be a ⊥∈U-tame category and D be a locally U-small category.
Then Theorem Main(a,b,c) hold.
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Approach to proof of Theorem B

Theorem (B)

Let C be a ⊥∈U-tame category and D be a locally U-small category.
Then Theorem 1(a,b,c) hold.

B.1 Massage the goal identity into the form M(f , id) = M(id, f ) for some function
M : Fact(f ) → hom(c , d).

B.2 By ⊥∈U-tameness of C and U-smallness of hom(c , d), M(f , id) = M(id, f ) as
desired.
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Proof of B.1(a)

Let F ,G ,α be as in hypotheses of Theorem 1(a). For any morphism f in C, we wish to
show that αB ◦ Ff = Gf ◦ αA.
Goal: Outer hexagon commutes.
Construct Mf : Fact(f ) → homD(FA,GB) to interpolate.

FA

FA

FB

GA

GB

GB

Mf (idA, f ) =

Mf (fl , fr ) =

Mf (f , idB) =

id

Ff

αA

αB

Gf

id

???

Hence it suffices to show that for all f , Mf (f , id) = Mf (id, f ).
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Proof of B.1(a)

Construct Mf : Fact(f ) → homD(FA,GB) to interpolate. So let

A

X

B

fl fr

f

be a factorisation of f .

FA

FA

FB

GA

GB

GB

Mf (idA, f ) =

Mf (fl , fr ) =

Mf (f , idB) =

FX GX

id

Ff

αA

αB

Gf

id

Ffl αX Gfr

Hence it suffices to show that for all f , Mf (f , id) = Mf (id, f ).
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Approach to proof of Theorem A

Theorem (A)

Assume PAU . Then any univalent category with limits of shape p ∗ 1 for all propositions p
is ⊥∈U-tame.

A.1 Show (using univalence and completeness of C) that for any f there is a function
Ff : U → Fact(f ) with Ff (0) = (f , id) and Ff (1) = (id, f ).

A.2 For any g , any M : Fact(g) → A and any factorisation (f , h) of g , let
M ′ : Fact(f ) → A be M ′(fl , fr ) = M(fl , h ◦ fr ).
Then by PAU , M

′Ff is constant, so M(f , h ◦ id) = M ′Ff 0 = M ′Ff 1 = M(id, h ◦ f ) as
desired.
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Proof of A.1

Let f : X → Y be a morphism of C. We now want to show (using univalence and
completeness of C) that there is a function F : U → Fact(f ) with F (0) = (f , id) and
F (1) = (id, f ).

F (0) =

F (S) =

F (1) =

X

X

X

M0

MS

M1

Y

Y

Y

Y

X

l0 r0

lS rS

l1 r1

f id

id f

∼=

∼=

Hence
we want to construct an interpolating

factorisation F (S) = X
lS−→ MS

rS−→ Y
dependent on a type S : U .

By univalence
of C, we only need isomorphisms
F (0) ∼= (f , id) and F (1) ∼= (id, f ).
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Proof of A.1, continued

For S a category, let S ∗ 1 be the result of freely adjoining a terminal object to S.
(Pictured are S = 0, 1, 2, but only S ∈ hProp will be used.)

0 ∗ 1 1 ∗ 1 2 ∗ 1

• • •• •

•

Hence, let F (T ) = X
(⟨idX ⟩s:∥T∥−1

,f )
−−−−−−−−−−→ lim J∥T∥−1

π−→ Y .
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For S a category, let S ∗ 1 be the result of freely adjoining a terminal object to S.
(Pictured are S = 0, 1, 2, but only S ∈ hProp will be used.)
Let JS : (S ∗ 1) → C be the diagram for a wide pullback of S copies of f : X → Y .
The JS admit cones from X .
We shall take the limit of JS : (S ∗ 1) → C.

J0 J1 J2

Y Y YX X

X

X X X

lim J0 lim J1 lim J2
f f

f

∼= ∼=

Hence, let F (T ) = X
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,f )
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“That’s nice, but I’m a homotopy type theorist.”

Fortunately, we didn’t really use much of that the category C was a 1-category – the
same techniques work for higher categories we write down.

Take a wild category to be defined like a category, but without restricting the homotopy
types of objects or morphisms, removing associativity, and adding that
idlid = idrid : (id ◦ id) = id.

Theorem

If C is a locally U-small ⊥∈U-tame wild category, then C has an associator α, and
moreover α satisfies the pentagon equation.

Theorem

If C is a locally U-small ⊥∈U-tame wild category, then so is C→.
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“That’s nice, but I’m not a homotopy type theorist.”

What about versions of the axiom for non-univalent universes?

Well, we never assumed univalence.

Call a category C glueable if for any proposition p, object A and p-indexed family
(Bu, iu : A ∼= Bu)u:p of objects isomorphic to A, there’s a specified object and
isomorphism (B ′, i ′ : A ∼= B ′) which if u : p equals (Bu, iu : A ∼= Bu).

Theorem (A’)

Assume PAU . Then any glueable category with limits of shape p ∗ 1 for all propositions p
is ⊥∈U-tame.

When Set is glueable, so are plenty of other categories, such as presheaf categories and
their replete full subcategories.

All models on the ‘Some Models’ slide have their category of sets glueable.
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Caveat: U doesn’t contain PropU

Lemma

PAU implies U doesn’t contain its subobject classifier. (Hence LEMU also fails.)

Explicitly, we take SCU to be the statement that there is Ω : U and some
i : hPropU/↔ ∼= Ω. (The quotient is only necessary in absence of univalence.)

Proof.

Suppose (by SCU ) there is Ω : U such that i : hPropU/↔ ∼= Ω.
Define f :

∏
X :U Ω as f (X ) = i(∥X∥−1). Then f (0) = i([0]) ̸= i([1]) = f (1).

f is nonconstant, contradicting PAU .

Despite this failure, it’s still possible to have a subuniverse S ⊆ U for which LEMS (hence
SCS) holds and a superuniverse V ⊇ U for which SCV holds: PA remains useful for
reasoning about situations with SC.
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The End

The End

Questions?
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Proof of B.1(b)

Let F ,G ,β be as in hypotheses of Theorem Main(b).

Goal: For any A
f−→ B, the outer diamond commutes.

Construct Mf : Fact(f ) → homD(F (B,A),G (A,B)) to interpolate.

F (B,A)

F (A,A)

F (X ,X )

F (B,B)

G (A,A)

G (X ,X )

G (B,B)

G (A,B)

Mf (idA, f ) =

Mf (fl , fr ) =

Mf (f , idB) =

F (f , idA)

βA

G (idA, f )

F (fr , fl) βX G (fl , fr )

F (idA, f )
βB

G (f , idB)
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Proof of B.1(c)

Goal: Outer diamond commutes.
Construct Mf : Fact(f ) → homD(FA,FC ) to interpolate.

FA

FA

FX

FB

FC

id F (g ◦ f )

Ffl F (g ◦ fr )

Ff Fg
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An Impredicative Univalent Universe

Let U be an univalent universe which has all (possibly U-large) products.

Proposition

If A : U satisfies ∀a, b.¬¬(a = b) → (a = b), then a 7→ λ .a : A → (U → A) is an
equivalence.

Proof sketch.

Let f : U → A and assume f (0) ̸= f (1). Denote Prop¬¬ := {a : Prop | a = ¬¬a}.
Then f : Prop¬¬ ↪→ A is a split embedding, so Prop¬¬ is essentially U-small.
By large completeness, Prop¬¬

− : Set → Set has an initial algebra A ∼= Prop¬¬
A, contradicting

Cantor’s diagonalisation argument.
Hence f (0) = f (1). Similarly, f (1) = f (X 0) = f (X 1) = f (X ).

Conjecture

PAU
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Dinatural transformations compose?

For a ⊥∈U-tame category C and locally U-small category D, dinatural transformations

F
⟨αc ⟩c−−−→ G

⟨βc ⟩c−−−→ H between functors F ,G ,H : Cop × C → D compose to F
⟨βc◦αc ⟩c−−−−−→ H.

This is not due to the related notion of “strong diantural transformation”, a sufficient
condition on β for β ◦ − to preserve dinaturality.

Indeed, let F : Setop × Set → Set be defined by F (B,A) = (A → B) → 2, and
αX : homSet((X → X ) → 2, 2) be given by αX (f ) = f (idX ).

α is dinatural but not strong dinatural: the left square commutes but the hexagon doesn’t.

•

(1 → 1) → 2

(1 → 0) → 2

(0 → 0) → 2

2

2

2

const1

const0

c 7→ c(−◦!)

c 7→ c(!◦−)

c 7→ c(id1)

c 7→ c(id0)

id2

id2
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A slightly easier condition for ⊥∈U -tameness

We only need to check the endpoints are always equal:

Lemma

Let C be a category such that for any morphism f , A : U , and M : Fact(f ) → A,
M(id, f ) = M(f , id). Then C is ⊥∈U-tame.

Proof.

For any g , any N : Fact(g) → A and any factorisation (f , h) of g , let M : Fact(f ) → A be
M(fl , fr ) = N(fl , h ◦ fr ).
M is constant by assumption, so N(f , h) = N(f , h ◦ id) = N(id, h ◦ f ) = N(id, g). Hence
N is constant.
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