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3/21Two Notions of EqualitiesTwo Notions of Equalities

Definitional Propositional

⊢ a1 = a2 : A ⊢ p : IdA(a1, a2)

Dependent type theory with propositional equality gives intensional
type theory (ITT).

t Equality reflection rule

Computation

Logic Topology

⊢ a1 : A ⊢ a2 : A
⊢ p : IdA(a1, a2)

⊢ a1 = a2 : A

Provably equal

Definitionally equal

Seems reasonable

Contractible

Singleton

Not true in general

Adding equality reflection gives extensional type theory (ETT).
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t Substitution vs. transport

Definitional Propositional

t = t ′ p : Id(t, t ′)

B(t) = B(t ′) B(t)
p∗−→ B(t ′)

▶ Changing terms between types indexed by definitionally
equal terms is proof-independent.

▶ Changing terms between types indexed by propositionally
equal terms depends on the proof of equality.
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⊢ p, p′ : IdA(a1, a2)

⊢ UIP(p, p′) : Id(p, p′)

Uniqueness of identity
proofs

Homotopically discrete
space

� Theorem (Hofmann 1995)

ETT is conservative over ITT+UIP.

⊢ p, p′ : IdA(a1, a2)

⊢ UIP(p, p′) : Id(p, p′)

⊢ p : IdA(a1, a2)

⊢ a1 = a2 : A

Limitation. Syntactic result did not account for extensions.
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` Definition

Two rings R and S are Morita equivalent iff ModR ≃ ModS .

(
Equivalence of
type theories

)
def
= Morita equivalence

def
=

(
Equivalence between
categories of models

)

t Need to Determine

1. What is a model of a type theory?

2. A suitable notion of equivalence between categories of
models?
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` Definition

A contextual category (C-system) structure on a category C
consists of

Grading Truncation Projection

obC =
∐
n∈N

obn C obn+1C
ft−→ obn C Γ.A

π−→ Γ

Notation. If ftA = Γ we write A = Γ.A.

Substitutions

∆.f ∗A Γ.A

∆ Γ

f .A

π
⌟

π

f
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⊢ A Type

(x1, x2 : A) ⊢ IdA(x1, x2) Type
Path object Provable equality

` Definition

A homotopy H : f ∼ g between f , g : Γ → ∆ ∈ C

is a factori-
sation

Γ ∆×∆

∆.∆.Id∆

(f ,g)

H

Homotopy equivalences w : Γ → ∆ are those maps admitting
left and right homotopy inverses.
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� Theorem (Kapulkin–Lumsdaine 2018)

The category CxlCatITT of models of ITT admits a cofibrantly-
generated left semi-model structure.

▶ Relative cell complexes are syntactic extensions.

▶ Weak equivalences are maps where types and terms lift
homotopically.

Weak type lifting Weak term lifting

D

C
F

A

FA A

≃

A B

FA FB

t

t

F t
∼
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� Theorem (Kapulkin–Lumsdaine 2018)

The category CxlCatITT of models of ITT admits a cofibrantly-
generated left semi-model structure.

▶ Relative cell complexes are syntactic extensions.

▶ Weak equivalences are maps where types and terms lift
homotopically.

` Definition

Two type theories T1,T2 extending ITT are Morita equivalent
if there is a Quillen equivalence CxlCatT1 CxlCatT2

⊥ .

Ò Example (Isaev 2020). The type theories ITT+Unit and
ITT+Contr are Morita equivalent.
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� Theorem

The type theories ITT+UIP and ETT are Morita equivalent.

CxlCatITT+UIP CxlCatETT
⟨−⟩
⊥
|−|

t Proof.

All models of ETT also are also models of ITT + UIP,
so there is an inclusion |−| : CxlCatETT ↪→ CxlCatITT+UIP. By
cocompleteness, it has a left adjoint ⟨−⟩.

It suffices to check C → |⟨C⟩| is a weak equivalence when C ∈
CxlCatITT+UIP is a cell-complex of the generating left class. The
cells are “syntactic”: obtained by freely adding types and terms
but no definitional equalities. This makes it tractable to explicitly
construct ⟨C⟩ ∈ CxlCatETT.

♥
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t Equality reflection ⇒ Identify homotopic terms

Γ ⊢ p : IdA(a1, a2)

Γ ⊢ a1 = a2 : A
Homotopic maps are equal

t Identify terms ⇒ Identify types

∆.f ∗A Γ.A

∆.g∗A

∆ Γ

⌟
≃

⌟

∼
f

g

⇒

∆.f ∗A Γ.A

∆.g∗A

∆ Γ

⌟
=

⌟

=
f

g

t Identify types ⇒ Identify terms

∆ Γ

∆′ Γ′
≃ ∼ ≃ ⇒

∆ Γ

∆′ Γ′
= = =
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13/21From C ∈ CxlCatITT+UIP to ⟨C⟩ ∈ CxlCatETTFrom C ∈ CxlCatITT+UIP to ⟨C⟩ ∈ CxlCatETT

t Repeatedly identify terms and types

Inductively collapse a wide subcategory of maps inWETT to identities.

∆2.f
∗
2 A2 Γ2.A2

∆1.f
∗
1 A1 Γ1.A1

∆2 Γ2

∆1 Γ1

∼≃ ≃

f2

f1

∼≃ ≃

The induced map is in WETT whenever:

▶ The solid maps above are in WETT; and

▶ The bottom face commute up to homotopy

This covers the freely-added base types (x⃗ : Γ) ⊢ A(x⃗).
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14/21From C ∈ CxlCatITT+UIP to ⟨C⟩ ∈ CxlCatETTFrom C ∈ CxlCatITT+UIP to ⟨C⟩ ∈ CxlCatETT

We need to support Π,Σ, Id-types.

t Identify types ⇒ Identify type formers

Suppose w : Γ.A.B ≃ Γ′.A′.B ′ ∈ WETT.

▶ wΠ(w) : Γ.Π(A,B) ≃ Γ′.Π(A′,B ′) ∈ WETT

▶ wΣ(w) : Γ.Σ(A,B) ≃ Γ′.Σ(A′,B ′) ∈ WETT

▶ wId(π · w) : Γ.A.A.IdA ≃ Γ′.A′.A′.IdA′ ∈ WETT

Ò Example (Hofmann 1995). In the syntactic model of ITT + UIP,
Hofmann calls co = WETT.
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` Construction

⟨C⟩ ∈ CxlCatETT is the category with

▶ Objects obC/≡, where

Γ ≡ Γ′ ⇔ Exists some Γ ≃ Γ′ ∈ WETT

▶ Maps morC/≡, where

 Γ
f−→ ∆
≡

Γ′ f ′−→ ∆′

 ⇔

∃Γ ≃ Γ′,
∆ ≃ ∆′ ∈ WETT st.

Γ ∆

Γ′ ∆′

f

≃ ∼ ≃

f ′


By construction, ⟨C⟩ is extensional. The quotient map [−] : C → |⟨C⟩| has
the weak lifting property for Morita equivalence.

Ò Example (Hofmann 1995). If S is the syntactic model, ⟨S⟩ = Q as from
Hofmann.
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16/21Role of the UIP AxiomRole of the UIP Axiom

 Γ
f−→ ∆
≡

Γ′
f ′−→ ∆′

 ⇔

∃Γ ≃ Γ′,
∆ ≃ ∆′ ∈ WETT st.

Γ ∆

Γ′ ∆′

f

≃ ∼ ≃

f ′



 Lemma

Define composition in ⟨C⟩ and show well-definedness.

t Proof. Replicate Hofmann’s approach.

Need to show f ≡ f ′ and
g ≡ g ′ composable then gf ≡ g ′f ′. Amounts to showing the middle
square commutes up to homotopy.

Γ ∆1 ∆2 Θ

Γ′ ∆′
1 ∆′

2 Θ′

f

≃ ∼

≃

≃ ?∼

g

≃ ∼ ≃

f ′ ≃ g ′

♥
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 Lemma

By UIP, if w ,w ′ : X ≃ X ′ ∈ WETT then w ≃ w ′.

t Proof. Apply induction on WETT.

∆2.f ∗2 A2 Γ2.A2

∆1.f ∗1 A1 Γ1.A1

∆2 Γ2

∆1 Γ1

∼≃ ≃

f2

f1

∼≃ ≃

Γ ⊢ H,H′ : IdA(a1, a2)

Γ ⊢ UIP(H,H′) : IdIdA(a1,a2)(H,H′)

Suppose there are two homotopies H,H ′ making the bottom face com-
mute up to homotopy. UIP says H and H ′ are homotopic. So the two
dashed equivalences induced by H and H ′ are homotopic as well.

This handles freely-added base types. What about Σ,Π, Id-types?
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dashed equivalences induced by H and H ′ are homotopic as well.

This handles freely-added base types. What about Σ,Π, Id-types?
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18/21Identification of Type FormersIdentification of Type Formers

t Recall: identification of type formers

Suppose w : Γ.A.B ≃ Γ′.A′.B ′ ∈ WETT.

▶ wΠ(w) : Γ.Π(A,B) ≃ Γ′.Π(A′,B ′) ∈ WETT

▶ wΣ(w) : Γ.Σ(A,B) ≃ Γ′.Σ(A′,B ′) ∈ WETT

▶ wId(π · w) : Γ.A.A.IdA ≃ Γ′.A′.A′.IdA′ ∈ WETT


 Lemma

By UIP, if w ,w ′ : X ≃ X ′ ∈ WETT then w ≃ w ′.

t Proof. (Continued.)

If w ≃ w ′ then wΠ(w) ≃ wΠ(w
′) and wΣ(w) ≃

wΣ(w
′) and wId(w) ≃ wId(w

′).

We are done if prove WETT cannot contain parallel maps between differ-
ent type constructors (i.e. cases like wΣ(w) : Γ.Π(A,B) ≃ Γ′.Π(A′,B ′) ∈
WETT)

.

Must prove that Π,Σ, Id-types are mutually distinct. In the syntac-
tical model of Hofmann’s proof, this is clear.

♥
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19/21Weak Head Normal Form in Cellular ModelsWeak Head Normal Form in Cellular Models

t Cellular models are syntactic

▶ The generating left class freely add terms and types.

▶ No identification of types.

� Proposition

Suppose C is cellular.

Then, there is a set of base types {(Θi ∈ C,Ti ∈
TyCΘi )}i∈I such that if X ∈ TyCΓ then precisely one of the following cases
are true:

▶ Σ-type. X = Σ(A,B) for some A.B ∈ TyCΓ.

▶ Π-type. X = Π(A,B) for some A.B ∈ TyCΓ.

▶ Id-type. X = f ∗IdA for some f : Γ → ∆.A.A.

▶ Base type. X = f ∗Ti some unique (Θi ,Ti ) and f : Γ → Θi .

t Proof. By cellular filtration. ♥
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20/21SummarySummary


 Lemma

By UIP, if w ,w ′ : X ≃ X ′ ∈ WETT then w ≃ w ′.


 Lemma

If C ∈ CxlCatITT+UIP then the quotient category ⟨C⟩ ∈ CxlCatETT
is a category with well-defined composition.

� Theorem

The type theories ITT+UIP and ETT are Morita equivalent.

CxlCatITT+UIP CxlCatETT
⟨−⟩
⊥
|−|
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21/21ConclusionConclusion

t Future directions

▶ Constructive proof of Hofmann’s result.

▶ Encompassing internal universes.

▶ Further instances of Morita equivalence.

Thank you!
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