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Propositional

F pP: IdA(al, 32)

Definitional

|—312322A

Dependent type theory with propositional equality gives intensional
type theory (ITT).

i 3 Equality reflection rule

Computation Logic Topology
Provably equal Contractible
Fai: A Fa: A I I
Fp: |dA(31, 32) Seems reasonable Not true in general
[= ay =az: A U' i ’U‘
Definitionally equal Singleton
Adding equality reflection gives extensional type theory (ETT).
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sk 3 Substitution vs. transport

Definitional Propositional
t=t p:ld(t,t)
B(t) = B(t) B(t) 2 B(t)

» Changing terms between types indexed by definitionally
equal terms is proof-independent.

» Changing terms between types indexed by propositionally
equal terms depends on the proof of equality.
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Fp,p’ i lda(ar, a2) Uniqueness of identity Homotopically discrete
F UIP(p, p’) : Id(p, p’) proofs space

Py " Theorem (Hofmann 1995)

ETT is conservative over | TT-+UIP.

Fp,p :lda(ar, a2) Fp:lda(ar, a)
F UIP(p, p') : 1d(p, p) Faa=a:A

Limitation. Syntactic result did not account for extensions.
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(-

Two rings R and S are Morita equivalent iff Modg ~ Mods.

Equivalence of \ def . . def (Equivalence between
. = Morita equivalence = .
type theories categories of models

VI Need to Determine

1. What is a model of a type theory?

2. A suitable notion of equivalence between categories of
models?
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—o_GEITED

A contextual category (C-system) structure on a category C

consists of
Grading Truncation Projection
obC = [[obsC = obn1C 5 ob,C FAST
neN

Notation. If ft A=T we write A =T_A.
Substitutions

AFA AT A
7r\l/ \Lﬂ'

A———T
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= A Type
(x1,x2 : A) F Ida(x1, x2) Type

B o inivion
A homotopy H: f ~ g between f,g: [ — A € C is a factori-
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= A Type
(x1,x2 : A) F Ida(x1, x2) Type

B o initon

A homotopy H: f ~ g between f,g: [ — A € C is a factori-
sation

Path object Provable equality

(f-) LA XA

T~

AAlda

r

Homotopy equivalences w: I — A are those maps admitting
left and right homotopy inverses.
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gy " Theorem (Kapulkin—Lumsdaine 2018)

The category CxICatjr1 of models of ITT admits a cofibrantly-
generated left semi-model structure.

» Relative cell complexes are syntactic extensions.

> Weak equivalences are maps where types and terms |ift
homotopically.

R Ociniion

Two type theories Tp, T> extending ITT are Morita equivalent
if there is a Quillen equivalence CxICatr, <__L* CxICatr,.

L 2 CTUN CR (R The type theories ITT-+Unit and
ITT+Contr are Morita equivalent.
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-~ -
The type theories I TT+UIP and ETT are Morita equivalent.

CxICatyTrruIP (#} CxICateTT

Proof.
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The type theories ITT+UIP and ETT are Morita equivalent.

CxICatytr P L 2 CxlCatgTT
+

All models of ETT also are also models of ITT + UIP,
so there is an inclusion |—|: CxICatgrt — CxICatjrriyip- By
cocompleteness, it has a left adjoint (—).

It suffices to check C — |(C)| is a weak equivalence when C €
CxICatyrrruip is a cell-complex of the generating left class. The
cells are “syntactic”: obtained by freely adding types and terms
but no definitional equalities. This makes it tractable to explicitly
construct (C) € CxICatgr.
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From C € CX|Cat|TT+U|p to (C) € CxlCaterr

ek 3 Equality reflection = Identify homotopic terms

I p:lda(ar, a
p—A(1,z) Homotopic maps are equal

NM-a=a:A
el 3 |dentify terms = Identify types

AfA r.A
> -

A:L;I'

g
sl s |dentify types = Identify terms

A—T A—T
ﬁiN~L:=>:~L=‘L:
AT A =T
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» The solid maps above are in WerT; and
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» The solid maps above are in WerT; and
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sl 3 Repeatedly identify terms and types

Inductively collapse a wide subcategory of maps in Wert to identities.

Az.fQ*Az ——T15.A

Eh ~ :2
Al-fl*Al — 1A l
A2 E — F2
L N T
A] - > F1 .

fi
The induced map is in Wert whenever:

» The solid maps above are in WerT; and

» The bottom face commute up to homotopy

This covers the freely-added base types (x: ') - A(X).
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We need to support 1. >, [d-types.

Sk B |dentify types = ldentify type formers

Suppose w: LA.B ~T"A".B" € Werr.

> Wn(W): I'.I‘I(A, B) ~ |_'.|_|(AI, B') € WeTT
> ws(w): T.E(AB)~T"2(A,B") € Werr
> W|d(7'r . W): FAAIldg ~T" A A'lda € WeTT




From C € CX|Cat|TT+U|p to (C) € CxlCaterr

We need to support 1. >, [d-types.

Sk B |dentify types = ldentify type formers

Suppose w: LA.B ~T"A".B" € Werr.

> wn(w): T.I(A,B) ~T".T1(A,B") € Werr
> ws(w): T.E(AB)~T"2(A,B") € Werr
> W|d(7T . W): FAAIldg ~T" A A'lda € WeTT

™ Example i e In the syntactic model of ITT + UIP,

Hofmann calls co = WeTT.
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> Objects obC/=, where
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» Maps mor C/=, where

ria S r-Ha
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f

By construction, (C) is extensional. The quotient map [—]: C — [(C)| has
the weak lifting property for Morita equivalence.
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From C € CX|Cat|TT+U|p to (C) € CxlCaterr

& Construction

(C) € CxICatgrr is the category with

> Objects obC/=, where

I =T < Exists some [ =~ " € Werr
» Maps mor C/=, where

ria S r-Ha

= = HAZA’,EWETT st. :~L ~ \L:

A a M — A
f

By construction, (C) is extensional. The quotient map [—]: C — [(C)| has
the weak lifting property for Morita equivalence.

L, i SENT CN G ITTENTELLYE If S is the syntactic model, (S) = Q as from

Hofmann.
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Role of the UIP Axiom 16/21

ria . rfHa
= = =P ,GWETTst —L ~o
P A~A N
r/ A/ fa

~ v -CIID

Define composition in (C) and show well-definedness.

|2 ) Replicate Hofmann's approach.

r— - A, —550

M & A, O
g




Role of the UIP Axiom 16/21

ria . rfHa
= = =P ,GWETTst —L ~o
P A~A N
r/ A/ fa

~ v -CIID

Define composition in (C) and show well-definedness.

|2 ) Replicate Hofmann's approach.




Role of the UIP Axiom 16/21

ria . rfHa
= = =P ,GWETTst —L ~o
P A~A N
r/ A/ fa

v -CIID

Define composition in (C) and show well-definedness.

. Replicate Hofmann's approach. Need to show f = f’ and
g = g’ composable then gf = g'f’.
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ria . rfHa
= & HA_A,GWETTst —LN =
r A s
v D
Define composition in (C) and show well-definedness
~ “ i Replicate Hofmann's approach. Need to show f = f’ and
g = g’ composable then gf = g'f’

-
-
12

g
> Aq As >y ©
| | l
=~ ~ =2 = ~ =]
l & T
/ / / /
r f’\Al =+ A —— ©
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rta -

= S |3, 0 € WerT st - v
; A~A ) ,
r oA =

-

LAY
H

2
= &

Define composition in (C) and show well-definedness.

Replicate Hofmann's approach. Need to show f = f’ and
g = g’ composable then gf = g’f’. Amounts to showing the middle
square commutes up to homotopy.
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~ v -CID
By UIP, if w,w’: X ~ X’ € WerT then w ~ w'.

Apply induction on WerT.

Az.fz*Ag —N) M2.A2
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Ay ffA ————T1. A l

f
L e

~
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A

Suppose there are two homotopies H. H' making the bottom face com-
mute up to homotopy.
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By UIP, if w,w’: X ~ X’ € WerT then w ~ w'.

v ARG Apply induction on WerT.

As. f Ay ——— 2. A
= | ~ =
i AL ’ r1 A4 l T+ H, H : lda(a1, a2)
l = l—g r F - UIP(H, H) : digy .20y (s H)

A1—>r1

Suppose there are two homotopies H. H' making the bottom face com-
mute up to homotopy. UIP says // and H’ are homotopic.
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By UIP, if w,w’: X ~ X’ € WerT then w ~ w/'.

Apply induction on WerT.

Az.f;Az —_> [.A

Al-fl*Al —‘> F1.A1' l

i MAY! L lﬁ I
Al %1 F1 }

M=H, H’ 5 |dA(21722)

[ FUIP(H, H') : g (2,200 (H H)

Suppose there are two homotopies H. H' making the bottom face com-
mute up to homotopy. UIP says / and /' are homotopic. So the two
dashed equivalences induced by H and H’ are homotopic as well.
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Suppose there are two homotopies H. H' making the bottom face com-
mute up to homotopy. UIP says / and /' are homotopic. So the two
dashed equivalences induced by H and H’ are homotopic as well.

This handles freely-added base types.
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By UIP, if w,w’: X ~ X’ € WerT then w ~ w/'.

Apply induction on WerT.

Az.f;Az —¥> [.A

PN =
.

. —— T

Ap.fi*A M.A; M= H,H :lda(a1, a2)
1
i At lﬁ I [ FUIP(H, H') : g (2,200 (H H)
N g
Al f rl

Suppose there are two homotopies H. H' making the bottom face com-
mute up to homotopy. UIP says / and /' are homotopic. So the two
dashed equivalences induced by H and H’ are homotopic as well.

This handles freely-added base types. What about X, I1, Id-types?
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sl @ Recall: identification of type formers

Suppose w: T AB~T"A.B" € Werr.

> wn(w): [.M(A, B) ~T".NA", B") € Werr
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PP HG0E) (Continued.) If w ~ w' then wn(w) ~ wn(w’) and ws(w) =~
ws (w') and wig(w) ~ wia(w').
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By UIP, if w,w’: X =~ X' € Wert then w ~ w'.
(Continued.) If w ~ w’ then wn(w) ~ wn(w’) and ws(w) ~

ws (w') and wig(w) ~ wia(w').

We are done if prove JVert cannot contain parallel maps between differ-
ent type constructors (i.e. cases like wy(w): I.I1(A,B) ~ I".[(A",B’) €
WetT).
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Suppose w: T AB~T"A.B" € Werr.
> wn(w): [.M(A, B) ~T".NA", B") € Werr

> ws(w): [.5(A,B) ~T".5(A, B') € Werr
> wia(m - w): TLAAlds ~ A A ldy € Werr

~ v -CID
By UIP, if w,w’: X =~ X' € Wert then w ~ w'.
(Continued.) If w ~ w’ then wn(w) ~ wn(w’) and ws(w) ~

ws (w') and wig(w) ~ wia(w').

We are done if prove JVert cannot contain parallel maps between differ-
ent type constructors (i.e. cases like wy(w): I.I1(A,B) ~ I".[(A",B’) €
WetT). Must prove that I, X, |d-types are mutually distinct.

<
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Identification of Type Formers

el M Recall: identification of type formers

Suppose w: T AB~T"A.B" € Werr.
> wn(w): [.M(A, B) ~T".NA", B") € Werr

> ws(w): [.5(A,B) ~T".5(A, B') € Werr
> wia(m - w): TLAAlds ~ A A ldy € Werr

~ v -CID
By UIP, if w,w’: X =~ X' € Wert then w ~ w'.
(Continued.) If w ~ w’ then wn(w) ~ wn(w’) and ws(w) ~

ws (w') and wig(w) ~ wia(w').

We are done if prove JVert cannot contain parallel maps between differ-
ent type constructors (i.e. cases like wy(w): I.I1(A,B) ~ I".[(A",B’) €
WetT). Must prove that I, X, |d-types are mutually distinct. In the syntac-
tical model of Hofmann's proof, this is clear. Q
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» No identification of types.
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Suppose C is cellular. Then, there is a set of base types {(©; ¢ C, T; ¢
Ty-Oi)}ics such that if X € Ty.[ then precisely one of the following cases
are true:

> J-type. X =3 (A, B) for some A.B € Tyl
> [l-type. X =T1(A, B) for some A.B € Tyl
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are true:
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> |d-type. X = f*lda for some f: I — A.A.A.
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Suppose C is cellular. Then, there is a set of base types {(©; ¢ C, T; ¢
Ty-Oi)}ics such that if X € Ty.[ then precisely one of the following cases

are true:
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Weak Head Normal Form in Cellular Models

sl 3 Cellular models are syntactic

> The generating left class freely add terms and types.

» No identification of types.

AR cposiion

Suppose C is cellular. Then, there is a set of base types {(©; ¢ C, T; ¢

Ty-Oi)}ics such that if X € Ty.[ then precisely one of the following cases
are true:

> J-type. X =3 (A, B) for some A.B € Tyl
> [l-type. X =T1(A, B) for some A.B € Tyl
> |d-type. X = f*lda for some f: I — A.A.A.

> Base type. X = f*T; some unique (©;, T;) and f: [ — ©;.

By cellular filtration.

<
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v .
By UIP, if w,w': X ~ X’ € WgtT then w ~ w'.

¥ D

If C € CxICatjr1uip then the quotient category (C) € CxICaterr
is a category with well-defined composition.
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- v -CED
By UIP, if w,w': X ~ X’ € WgtT then w ~ w'.
..
If C € CxICatjr1uip then the quotient category (C) € CxICaterr
is a category with well-defined composition.

~ ¢ -G

The type theories ITT4+UIP and ETT are Morita equivalent.

CxICatyTrruip (|¢_|,> CxlCatgTT

RS
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a Future directions

» Constructive proof of Hofmann's result.

» Encompassing internal universes.

» Further instances of Morita equivalence.

Thank you!

RS



