
Oracle modalities for higher dimensional types

Titouan Leclercq Andrew Swan

ENS de Lyon (student) University of Ljubljana

HoTT / UF 2025

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 1 / 14



Let’s recall the basics

The setting

We’re doing synthetic computability in HoTT, so we have:

⋄
∏

and
∑

types

⋄ higher inductive types

⋄ universes

⋄ univalence (not needed)

We also assume Markov’s Principle in some proofs.

Most of the work is formalized in Cubical Agda (soon to appear on
https://github.com/awswan/higher-computability).

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 2 / 14



Let’s recall the basics

The setting

We’re doing synthetic computability in HoTT, so we have:

⋄
∏

and
∑

types

⋄ higher inductive types

⋄ universes

⋄ univalence (not needed)

We also assume Markov’s Principle in some proofs.
Most of the work is formalized in Cubical Agda (soon to appear on
https://github.com/awswan/higher-computability).

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 2 / 14



Let’s recall the basics

Modalities in HoTT

Modalities are rich, but we only focus on a few things:

⋄ a modality is a function ⃝ : U → U with a unit
η : (A : U)→ A→⃝A and fancy stuff;

⋄ a type A is ⃝-modal when ηA is an equivalence;

⋄ U⃝ is the type of all ⃝-modal types.

U⃝ will be seen as a subuniverse of U . When ⃝ is well behaved (and it
will be), U⃝ is also a model of HoTT / CTT.
We need two main modalities:

⋄ ∇ is such that U∇ is the classical world, where LEM is true

⋄ given a family B : A→ Prop, the nullification ⃝B is the smallest
modality such that in U⃝B , every B(a) is contractible.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 3 / 14



Let’s recall the basics

Modalities in HoTT

Modalities are rich, but we only focus on a few things:

⋄ a modality is a function ⃝ : U → U with a unit
η : (A : U)→ A→⃝A and fancy stuff;

⋄ a type A is ⃝-modal when ηA is an equivalence;

⋄ U⃝ is the type of all ⃝-modal types.

U⃝ will be seen as a subuniverse of U . When ⃝ is well behaved (and it
will be), U⃝ is also a model of HoTT / CTT.
We need two main modalities:

⋄ ∇ is such that U∇ is the classical world, where LEM is true

⋄ given a family B : A→ Prop, the nullification ⃝B is the smallest
modality such that in U⃝B , every B(a) is contractible.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 3 / 14



Let’s recall the basics

Modalities in HoTT

Modalities are rich, but we only focus on a few things:

⋄ a modality is a function ⃝ : U → U with a unit
η : (A : U)→ A→⃝A and fancy stuff;

⋄ a type A is ⃝-modal when ηA is an equivalence;

⋄ U⃝ is the type of all ⃝-modal types.

U⃝ will be seen as a subuniverse of U . When ⃝ is well behaved (and it
will be), U⃝ is also a model of HoTT / CTT.

We need two main modalities:

⋄ ∇ is such that U∇ is the classical world, where LEM is true

⋄ given a family B : A→ Prop, the nullification ⃝B is the smallest
modality such that in U⃝B , every B(a) is contractible.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 3 / 14



Let’s recall the basics

Modalities in HoTT

Modalities are rich, but we only focus on a few things:

⋄ a modality is a function ⃝ : U → U with a unit
η : (A : U)→ A→⃝A and fancy stuff;

⋄ a type A is ⃝-modal when ηA is an equivalence;

⋄ U⃝ is the type of all ⃝-modal types.

U⃝ will be seen as a subuniverse of U . When ⃝ is well behaved (and it
will be), U⃝ is also a model of HoTT / CTT.
We need two main modalities:

⋄ ∇ is such that U∇ is the classical world, where LEM is true

⋄ given a family B : A→ Prop, the nullification ⃝B is the smallest
modality such that in U⃝B , every B(a) is contractible.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 3 / 14



Let’s recall the basics

Computability

There is a subset Comp ⊆ (N⇀ N) of computable (partial) functions
enumerated by a function ϕ : N→ N⇀ N.
Given f : A⇀ B, f (a) ↑ when f (a) is undefined, f (a) ↓ when f (a) is
defined.

Given a function f : N→ N, ϕf
e is the e-th computable function with

oracle for f : it has access to f as a new primitive term.
Turing reduction

f ≤T g ≜ ∃e ∈ N, f = ϕg
e

induces the Turing equivalence relation ≡T . Turing degrees are
equivalent classes for ≡T .
A subset X ⊆ N is computable if χX = ϕe for some e ∈ N. It is
computably enumerable (c.e.) if it is the domain of a partial computable
function (ϕe for some e ∈ N). Example: K ≜ {e ∈ N | ϕe(e) ↓}.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 4 / 14



Let’s recall the basics

Computability

There is a subset Comp ⊆ (N⇀ N) of computable (partial) functions
enumerated by a function ϕ : N→ N⇀ N.
Given f : A⇀ B, f (a) ↑ when f (a) is undefined, f (a) ↓ when f (a) is
defined.
Given a function f : N→ N, ϕf

e is the e-th computable function with
oracle for f : it has access to f as a new primitive term.
Turing reduction

f ≤T g ≜ ∃e ∈ N, f = ϕg
e

induces the Turing equivalence relation ≡T . Turing degrees are
equivalent classes for ≡T .

A subset X ⊆ N is computable if χX = ϕe for some e ∈ N. It is
computably enumerable (c.e.) if it is the domain of a partial computable
function (ϕe for some e ∈ N). Example: K ≜ {e ∈ N | ϕe(e) ↓}.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 4 / 14



Let’s recall the basics

Computability

There is a subset Comp ⊆ (N⇀ N) of computable (partial) functions
enumerated by a function ϕ : N→ N⇀ N.
Given f : A⇀ B, f (a) ↑ when f (a) is undefined, f (a) ↓ when f (a) is
defined.
Given a function f : N→ N, ϕf

e is the e-th computable function with
oracle for f : it has access to f as a new primitive term.
Turing reduction

f ≤T g ≜ ∃e ∈ N, f = ϕg
e

induces the Turing equivalence relation ≡T . Turing degrees are
equivalent classes for ≡T .
A subset X ⊆ N is computable if χX = ϕe for some e ∈ N. It is
computably enumerable (c.e.) if it is the domain of a partial computable
function (ϕe for some e ∈ N). Example: K ≜ {e ∈ N | ϕe(e) ↓}.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 4 / 14



Let’s recall the basics

Synthetic computability

Comp is useless: every function is computable. We need the (internal)
Church Thesis instead:

∀f : N⇀ N,∃e : N, f = ϕe

For a noncomputable function “f : A→ B”, we consider f : ∇A→ ∇B,
equivalently f : A→ ∇B.

f (a) ↓≜
∑
b:B

f a = ηB b

A function ϕf
e is a function in “the world where f is total”.

Consider the family λ(a : A).(f a) ↓: A→ Type and its nullification is the
world of f -computable functions.
Works well with sets, but what about higher inductive types?

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 5 / 14



Let’s recall the basics

Synthetic computability

Comp is useless: every function is computable. We need the (internal)
Church Thesis instead:

∀f : N⇀ N,∃e : N, f = ϕe

For a noncomputable function “f : A→ B”, we consider f : ∇A→ ∇B,
equivalently f : A→ ∇B.

f (a) ↓≜
∑
b:B

f a = ηB b

A function ϕf
e is a function in “the world where f is total”.

Consider the family λ(a : A).(f a) ↓: A→ Type and its nullification is the
world of f -computable functions.
Works well with sets, but what about higher inductive types?

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 5 / 14



Motivation

Seeing the oracle as counting

For sets, the most important case is a function f : N→ N.
f can be seen as counting the set Fin (f n): the family
λ(n : N).isFinSet (g n) works, with g n ≜ Fin (f n).
For higher dimension, we have a general notion: finite CW-complex.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 6 / 14



Motivation

CW-complex

A small modification over the usual definition of CW-complex to be
closer to enumeration.
A CW-skeleton is a sequence of:

⋄ spaces Xn, (option) integer kn and maps αn : Skn → Xn such that

⋄ X0 is empty

⋄ for every n, we have a (option) pushout square

Skn Xn

1 Xn+1

αn

A CW-complex is (merely) the colimit of a CW-skeleton, a finite
CW-complex is the same for a finite CW-skeleton.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 7 / 14



Motivation

CW-complex

A small modification over the usual definition of CW-complex to be
closer to enumeration.
A CW-skeleton is a sequence of:

⋄ spaces Xn, (option) integer kn and maps αn : Skn → Xn such that

⋄ X0 is empty

⋄ for every n, we have a (option) pushout square

Skn Xn

1 Xn+1

αn

A CW-complex is (merely) the colimit of a CW-skeleton, a finite
CW-complex is the same for a finite CW-skeleton.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 7 / 14



Generalized oracles

First definition

We have the following situation:

CWFin U

CWFin∇ U∇

A generalized oracle will be a family B : A→ CWFin∇, the associated
modality is the nullification of

λ(a : A).isCWFin (B a)

Every function f : A→ ∇B with B a set can be seen as a generalized
oracle, with the family λ(a : A).(f a) ↓. Knowing that (f a) ↓ is a finite
CW means that it is decidable, hence inhabited. So, we indeed have a
generalization of oracle modalities.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 8 / 14



Generalized oracles

First definition

We have the following situation:

CWFin U

CWFin∇ U∇

A generalized oracle will be a family B : A→ CWFin∇, the associated
modality is the nullification of

λ(a : A).isCWFin (B a)

Every function f : A→ ∇B with B a set can be seen as a generalized
oracle, with the family λ(a : A).(f a) ↓. Knowing that (f a) ↓ is a finite
CW means that it is decidable, hence inhabited. So, we indeed have a
generalization of oracle modalities.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 8 / 14



C.e. sets

Motivation

f : N→ 2 is c.e. ⇐⇒ there exists g : N×N→ 2 non-decreasing on the
second coordinate such that f (n) = maxm g(n,m). It can be seen as a
grid we fill with elements through time:

g(0, 0) g(1, 0) · · ·

g(0, 1) g(1, 1) · · ·

...
...

. . .

f (0) f (1) · · ·

We do the same with pushouts for the generalization.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 9 / 14



C.e. sets

Definition

A family B : A→ Type is generalized c.e. (g.c.e.) when there is a grid
Xa,m : A× N→ Type such that:

⋄ Xa,0 is empty

⋄ for each n and a : A, we have (option) k : N, α : Sk → Xa,n and a
pushout square

Sk Xa,n

1 Xa,n+1

α

⋄ for each a : A, B(a) ≃ colim
m→∞

Xa,m

We call such a grid a c.e. grid.

If B : A→ Prop, it is c.e. iff it is g.c.e.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 10 / 14



C.e. sets

Definition

A family B : A→ Type is generalized c.e. (g.c.e.) when there is a grid
Xa,m : A× N→ Type such that:

⋄ Xa,0 is empty

⋄ for each n and a : A, we have (option) k : N, α : Sk → Xa,n and a
pushout square

Sk Xa,n

1 Xa,n+1

α

⋄ for each a : A, B(a) ≃ colim
m→∞

Xa,m

We call such a grid a c.e. grid.
If B : A→ Prop, it is c.e. iff it is g.c.e.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 10 / 14



C.e. sets

The case of sets

The candidate for sets which are g.c.e: the K -c.e. sets.
X is K -c.e. ⇐⇒ there exists g : N× N→ 2 such that
f (n) = lim infm g(n,m)
We can simulate it with unary and binary sets:

•

•

•

•

•

•

•

•

1 2 1 2 · · ·

The colimit in this case is the lim inf of the sequence of cardinals.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 11 / 14



C.e. sets

The case of groupoids

If the type is a groupoid, it can be seen as a group:

⋄ adding a path gives a constructor in the free group

⋄ adding a homotopy between path gives a new relation

Then the oracle of a group gives a finite presentation of it. As finitely
presented group can be non computable, it seems hard to know what
happens for the computational strength.

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 12 / 14



Conclusion

Conclusion

We have a generalization of oracle modalities for types of higher
dimension.

We gave a generalization of being computably enumerable (the usual c.e.
propositions are still c.e.).
It seems that going from propositions to sets gives a computational boost
similar to having an oracle for K : do this happen for every dimension?
For groupoid, do we have the K ′-c.e. sets? (K ′ = {e ∈ N | ϕK

e (e) ↓})

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 13 / 14



Conclusion

Conclusion

We have a generalization of oracle modalities for types of higher
dimension.
We gave a generalization of being computably enumerable (the usual c.e.
propositions are still c.e.).

It seems that going from propositions to sets gives a computational boost
similar to having an oracle for K : do this happen for every dimension?
For groupoid, do we have the K ′-c.e. sets? (K ′ = {e ∈ N | ϕK

e (e) ↓})

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 13 / 14



Conclusion

Conclusion

We have a generalization of oracle modalities for types of higher
dimension.
We gave a generalization of being computably enumerable (the usual c.e.
propositions are still c.e.).
It seems that going from propositions to sets gives a computational boost
similar to having an oracle for K : do this happen for every dimension?
For groupoid, do we have the K ′-c.e. sets? (K ′ = {e ∈ N | ϕK

e (e) ↓})

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 13 / 14



Conclusion

Tank you!

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 14 / 14


