Oracle modalities for higher dimensional types

Titouan Leclercq Andrew Swan

ENS de Lyon (student) University of Ljubljana

HoTT / UF 2025

The setting

We're doing synthetic computability in HoTT, so we have:

- $\diamond~\prod$ and \sum types
- ♦ higher inductive types
- ◊ universes
- ◊ univalence (not needed)

We also assume Markov's Principle in some proofs.

The setting

We're doing synthetic computability in HoTT, so we have:

- $\diamond \prod$ and \sum types
- ♦ higher inductive types
- ◊ universes
- ◊ univalence (not needed)

We also assume Markov's Principle in some proofs. Most of the work is formalized in Cubical Agda (soon to appear on https://github.com/awswan/higher-computability).

Modalities are rich, but we only focus on a few things:

◊ a modality is a function \bigcirc : U → U with a unit $η : (A : U) → A → \bigcirc A$ and fancy stuff;

Modalities are rich, but we only focus on a few things:

- ◊ a modality is a function \bigcirc : U → U with a unit $η : (A : U) → A → \bigcirc A$ and fancy stuff;
- \diamond a type *A* is \bigcirc -modal when η_A is an equivalence;
- $\diamond~\mathcal{U}^\bigcirc$ is the type of all \bigcirc -modal types.

Modalities are rich, but we only focus on a few things:

- ◊ a modality is a function \bigcirc : U → U with a unit $η : (A : U) → A → \bigcirc A$ and fancy stuff;
- \diamond a type *A* is \bigcirc -modal when η_A is an equivalence;

 $\diamond~\mathcal{U}^\bigcirc$ is the type of all \bigcirc -modal types.

 \mathcal{U}^{\bigcirc} will be seen as a subuniverse of \mathcal{U} . When \bigcirc is well behaved (and it will be), \mathcal{U}^{\bigcirc} is also a model of HoTT / CTT.

Modalities are rich, but we only focus on a few things:

- ♦ a modality is a function $\bigcirc : \mathcal{U} \to \mathcal{U}$ with a unit $\eta : (A : \mathcal{U}) \to A \to \bigcirc A$ and fancy stuff;
- \diamond a type *A* is \bigcirc -modal when η_A is an equivalence;

 $\diamond~\mathcal{U}^\bigcirc$ is the type of all $\bigcirc\text{-modal}$ types.

 \mathcal{U}^{\bigcirc} will be seen as a subuniverse of \mathcal{U} . When \bigcirc is well behaved (and it will be), \mathcal{U}^{\bigcirc} is also a model of HoTT / CTT. We need two main modalities:

- $\diamond~\nabla$ is such that \mathcal{U}^{∇} is the classical world, where LEM is true
- ♦ given a family $B : A \to Prop$, the nullification \bigcirc_B is the smallest modality such that in \mathcal{U}^{\bigcirc_B} , every B(a) is contractible.

Computability

There is a subset $\text{Comp} \subseteq (\mathbb{N} \to \mathbb{N})$ of computable (partial) functions enumerated by a function $\varphi : \mathbb{N} \to \mathbb{N} \to \mathbb{N}$. Given $f : A \to B$, $f(a) \uparrow$ when f(a) is undefined, $f(a) \downarrow$ when f(a) is defined.

Computability

There is a subset $\operatorname{Comp} \subseteq (\mathbb{N} \to \mathbb{N})$ of computable (partial) functions enumerated by a function $\varphi : \mathbb{N} \to \mathbb{N} \to \mathbb{N}$.

Given $f : A \rightarrow B$, $f(a) \uparrow$ when f(a) is undefined, $f(a) \downarrow$ when f(a) is defined.

Given a function $f : \mathbb{N} \to \mathbb{N}$, φ_e^f is the *e*-th computable function with oracle for f: it has access to f as a new primitive term.

Turing reduction

$$f \leq_{\mathcal{T}} g \triangleq \exists e \in \mathbb{N}, f = \varphi_e^g$$

induces the Turing equivalence relation $\equiv_{\mathcal{T}}$. Turing degrees are equivalent classes for $\equiv_{\mathcal{T}}$.

Computability

There is a subset $\operatorname{Comp} \subseteq (\mathbb{N} \to \mathbb{N})$ of computable (partial) functions enumerated by a function $\varphi : \mathbb{N} \to \mathbb{N} \to \mathbb{N}$.

Given $f : A \rightarrow B$, $f(a) \uparrow$ when f(a) is undefined, $f(a) \downarrow$ when f(a) is defined.

Given a function $f : \mathbb{N} \to \mathbb{N}$, φ_e^f is the *e*-th computable function with oracle for f: it has access to f as a new primitive term.

Turing reduction

$$f \leq_{\mathcal{T}} g \triangleq \exists e \in \mathbb{N}, f = \varphi_e^g$$

induces the Turing equivalence relation $\equiv_{\mathcal{T}}$. Turing degrees are equivalent classes for $\equiv_{\mathcal{T}}$.

A subset $X \subseteq \mathbb{N}$ is computable if $\chi_X = \varphi_e$ for some $e \in \mathbb{N}$. It is computably enumerable (c.e.) if it is the domain of a partial computable function (φ_e for some $e \in \mathbb{N}$). Example: $K \triangleq \{e \in \mathbb{N} \mid \varphi_e(e) \downarrow\}$.

Synthetic computability

 Comp is useless: every function is computable. We need the (internal) Church Thesis instead:

$$\forall f : \mathbb{N} \rightarrow \mathbb{N}, \exists e : \mathbb{N}, f = \varphi_e$$

For a noncomputable function " $f : A \to B$ ", we consider $f : \nabla A \to \nabla B$, equivalently $f : A \to \nabla B$.

$$f(a)\downarrow \triangleq \sum_{b:B} f \ a = \eta_B \ b$$

Synthetic computability

 Comp is useless: every function is computable. We need the (internal) Church Thesis instead:

$$\forall f : \mathbb{N} \rightarrow \mathbb{N}, \exists e : \mathbb{N}, f = \varphi_e$$

For a noncomputable function " $f : A \to B$ ", we consider $f : \nabla A \to \nabla B$, equivalently $f : A \to \nabla B$.

$$f(a)\downarrow \triangleq \sum_{b:B} f \ a = \eta_B \ b$$

A function φ_e^f is a function in "the world where f is total". Consider the family $\lambda(a:A).(f a) \downarrow: A \to \text{Type}$ and its nullification is the world of f-computable functions.

Works well with sets, but what about higher inductive types?

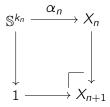
Seeing the oracle as counting

For sets, the most important case is a function $f : \mathbb{N} \to \mathbb{N}$. f can be seen as counting the set Fin $(f \ n)$: the family $\lambda(n : \mathbb{N})$.isFinSet $(g \ n)$ works, with $g \ n \triangleq$ Fin $(f \ n)$. For higher dimension, we have a general notion: finite CW-complex.

CW-complex

A small modification over the usual definition of CW-complex to be closer to enumeration.

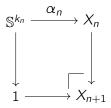
- A CW-skeleton is a sequence of:
 - \diamond spaces X_n , (option) integer k_n and maps $\alpha_n : \mathbb{S}^{k_n} \to X_n$ such that
 - $\diamond X_0$ is empty
 - \diamond for every *n*, we have a (option) pushout square



CW-complex

A small modification over the usual definition of CW-complex to be closer to enumeration.

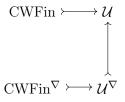
- A CW-skeleton is a sequence of:
 - \diamond spaces X_n , (option) integer k_n and maps $\alpha_n : \mathbb{S}^{k_n} \to X_n$ such that
 - $\diamond X_0$ is empty
 - \diamond for every *n*, we have a (option) pushout square



A CW-complex is (merely) the colimit of a CW-skeleton, a finite CW-complex is the same for a finite CW-skeleton.

First definition

We have the following situation:

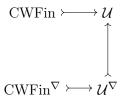


A generalized oracle will be a family $B : A \to CWFin^{\nabla}$, the associated modality is the nullification of

 $\lambda(a: A)$.isCWFin (B a)

First definition

We have the following situation:



A generalized oracle will be a family $B : A \to CWFin^{\nabla}$, the associated modality is the nullification of

 $\lambda(a: A)$.isCWFin (B a)

Every function $f : A \to \nabla B$ with B a set can be seen as a generalized oracle, with the family $\lambda(a : A).(f a) \downarrow$. Knowing that $(f a) \downarrow$ is a finite CW means that it is decidable, hence inhabited. So, we indeed have a generalization of oracle modalities.

Motivation

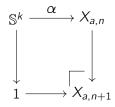
 $f : \mathbb{N} \to 2$ is c.e. \iff there exists $g : \mathbb{N} \times \mathbb{N} \to 2$ non-decreasing on the second coordinate such that $f(n) = \max_m g(n, m)$. It can be seen as a grid we fill with elements through time:

We do the same with pushouts for the generalization.

Definition

A family $B : A \to \text{Type}$ is generalized c.e. (g.c.e.) when there is a grid $X_{a,m} : A \times \mathbb{N} \to \text{Type}$ such that:

- $\diamond X_{a,0}$ is empty
- \diamond for each *n* and *a* : *A*, we have (option) *k* : ℕ, α : ℕ^{*k*} → *X*_{*a*,*n*} and a pushout square

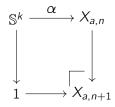


♦ for each *a* : *A*, $B(a) \simeq \underset{m \to \infty}{\operatorname{colim}} X_{a,m}$ We call such a grid a c.e. grid.

Definition

A family $B : A \to \text{Type}$ is generalized c.e. (g.c.e.) when there is a grid $X_{a,m} : A \times \mathbb{N} \to \text{Type}$ such that:

- $\diamond X_{a,0}$ is empty
- \diamond for each *n* and *a* : *A*, we have (option) *k* : ℕ, *α* : $\mathbb{S}^k \to X_{a,n}$ and a pushout square

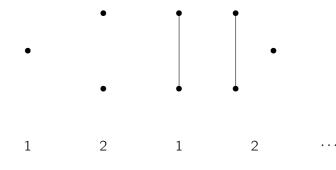


♦ for each a : A, B(a) $\simeq \underset{m \to \infty}{\operatorname{colim}} X_{a,m}$ We call such a grid a c.e. grid.
If B : A → Prop, it is c.e. iff it is g.c.e.

The case of sets

The candidate for sets which are g.c.e: the *K*-c.e. sets. *X* is *K*-c.e. \iff there exists $g : \mathbb{N} \times \mathbb{N} \to 2$ such that $f(n) = \liminf_{m} g(n, m)$

We can simulate it with unary and binary sets:



The colimit in this case is the lim inf of the sequence of cardinals.

The case of groupoids

If the type is a groupoid, it can be seen as a group:

- $\diamond\,$ adding a path gives a constructor in the free group
- $\diamond\,$ adding a homotopy between path gives a new relation

Then the oracle of a group gives a finite presentation of it. As finitely presented group can be non computable, it seems hard to know what happens for the computational strength.

We have a generalization of oracle modalities for types of higher dimension.

We have a generalization of oracle modalities for types of higher dimension.

We gave a generalization of being computably enumerable (the usual c.e. propositions are still c.e.).

We have a generalization of oracle modalities for types of higher dimension.

We gave a generalization of being computably enumerable (the usual c.e. propositions are still c.e.).

It seems that going from propositions to sets gives a computational boost similar to having an oracle for K: do this happen for every dimension? For groupoid, do we have the K'-c.e. sets? ($K' = \{e \in \mathbb{N} \mid \varphi_e^K(e) \downarrow\}$)

Tank you!