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Let’s recall the basics

The setting

We’re doing synthetic computability in HoTT, so we have:

⋄
∏

and
∑

types

⋄ higher inductive types

⋄ universes

⋄ univalence (not needed)

We also assume Markov’s Principle in some proofs.

Most of the work is formalized in Cubical Agda (soon to appear on
https://github.com/awswan/higher-computability).
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Let’s recall the basics

Modalities in HoTT

Modalities are rich, but we only focus on a few things:

⋄ a modality is a function ⃝ : U → U with a unit
η : (A : U)→ A→⃝A and fancy stuff;

⋄ a type A is ⃝-modal when ηA is an equivalence;

⋄ U⃝ is the type of all ⃝-modal types.

U⃝ will be seen as a subuniverse of U . When ⃝ is well behaved (and it
will be), U⃝ is also a model of HoTT / CTT.
We need two main modalities:

⋄ ∇ is such that U∇ is the classical world, where LEM is true

⋄ given a family B : A→ Prop, the nullification ⃝B is the smallest
modality such that in U⃝B , every B(a) is contractible.
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Let’s recall the basics

Computability

There is a subset Comp ⊆ (N⇀ N) of computable (partial) functions
enumerated by a function ϕ : N→ N⇀ N.
Given f : A⇀ B, f (a) ↑ when f (a) is undefined, f (a) ↓ when f (a) is
defined.

Given a function f : N→ N, ϕf
e is the e-th computable function with

oracle for f : it has access to f as a new primitive term.
Turing reduction

f ≤T g ≜ ∃e ∈ N, f = ϕg
e

induces the Turing equivalence relation ≡T . Turing degrees are
equivalent classes for ≡T .
A subset X ⊆ N is computable if χX = ϕe for some e ∈ N. It is
computably enumerable (c.e.) if it is the domain of a partial computable
function (ϕe for some e ∈ N). Example: K ≜ {e ∈ N | ϕe(e) ↓}.
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Let’s recall the basics

Synthetic computability

Comp is useless: every function is computable. We need the (internal)
Church Thesis instead:

∀f : N⇀ N,∃e : N, f = ϕe

For a noncomputable function “f : A→ B”, we consider f : ∇A→ ∇B,
equivalently f : A→ ∇B.

f (a) ↓≜
∑
b:B

f a = ηB b

A function ϕf
e is a function in “the world where f is total”.

Consider the family λ(a : A).(f a) ↓: A→ Type and its nullification is the
world of f -computable functions.
Works well with sets, but what about higher inductive types?

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 5 / 14



Let’s recall the basics

Synthetic computability

Comp is useless: every function is computable. We need the (internal)
Church Thesis instead:

∀f : N⇀ N,∃e : N, f = ϕe

For a noncomputable function “f : A→ B”, we consider f : ∇A→ ∇B,
equivalently f : A→ ∇B.

f (a) ↓≜
∑
b:B

f a = ηB b

A function ϕf
e is a function in “the world where f is total”.

Consider the family λ(a : A).(f a) ↓: A→ Type and its nullification is the
world of f -computable functions.
Works well with sets, but what about higher inductive types?

Titouan Leclercq Andrew Swan Oracle modalities for higher dimensional types HoTT / UF 2025 5 / 14



Motivation

Seeing the oracle as counting

For sets, the most important case is a function f : N→ N.
f can be seen as counting the set Fin (f n): the family
λ(n : N).isFinSet (g n) works, with g n ≜ Fin (f n).
For higher dimension, we have a general notion: finite CW-complex.
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Motivation

CW-complex

A small modification over the usual definition of CW-complex to be
closer to enumeration.
A CW-skeleton is a sequence of:

⋄ spaces Xn, (option) integer kn and maps αn : Skn → Xn such that

⋄ X0 is empty

⋄ for every n, we have a (option) pushout square

Skn Xn

1 Xn+1

αn

A CW-complex is (merely) the colimit of a CW-skeleton, a finite
CW-complex is the same for a finite CW-skeleton.
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Generalized oracles

First definition

We have the following situation:

CWFin U

CWFin∇ U∇

A generalized oracle will be a family B : A→ CWFin∇, the associated
modality is the nullification of

λ(a : A).isCWFin (B a)

Every function f : A→ ∇B with B a set can be seen as a generalized
oracle, with the family λ(a : A).(f a) ↓. Knowing that (f a) ↓ is a finite
CW means that it is decidable, hence inhabited. So, we indeed have a
generalization of oracle modalities.
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C.e. sets

Motivation

f : N→ 2 is c.e. ⇐⇒ there exists g : N×N→ 2 non-decreasing on the
second coordinate such that f (n) = maxm g(n,m). It can be seen as a
grid we fill with elements through time:

g(0, 0) g(1, 0) · · ·

g(0, 1) g(1, 1) · · ·

...
...

. . .

f (0) f (1) · · ·

We do the same with pushouts for the generalization.
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C.e. sets

Definition

A family B : A→ Type is generalized c.e. (g.c.e.) when there is a grid
Xa,m : A× N→ Type such that:

⋄ Xa,0 is empty

⋄ for each n and a : A, we have (option) k : N, α : Sk → Xa,n and a
pushout square

Sk Xa,n

1 Xa,n+1

α

⋄ for each a : A, B(a) ≃ colim
m→∞

Xa,m

We call such a grid a c.e. grid.

If B : A→ Prop, it is c.e. iff it is g.c.e.
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C.e. sets

The case of sets

The candidate for sets which are g.c.e: the K -c.e. sets.
X is K -c.e. ⇐⇒ there exists g : N× N→ 2 such that
f (n) = lim infm g(n,m)
We can simulate it with unary and binary sets:

•

•

•

•

•

•

•

•

1 2 1 2 · · ·

The colimit in this case is the lim inf of the sequence of cardinals.
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C.e. sets

The case of groupoids

If the type is a groupoid, it can be seen as a group:

⋄ adding a path gives a constructor in the free group

⋄ adding a homotopy between path gives a new relation

Then the oracle of a group gives a finite presentation of it. As finitely
presented group can be non computable, it seems hard to know what
happens for the computational strength.
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Conclusion

Conclusion

We have a generalization of oracle modalities for types of higher
dimension.

We gave a generalization of being computably enumerable (the usual c.e.
propositions are still c.e.).
It seems that going from propositions to sets gives a computational boost
similar to having an oracle for K : do this happen for every dimension?
For groupoid, do we have the K ′-c.e. sets? (K ′ = {e ∈ N | ϕK

e (e) ↓})
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Conclusion

Tank you!
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