Data Types with Symmetries via Action Containers
HoTT/UF 2025

Philipp Joram Niccolo Veltri
Tallinn University of Technology, Estonia

2025-04-16

Overview

Goal of the talk
Introduce action containers to model data types with symmetries

Contents
» Good ol Containers

» Endofunctors and algebraic data types
» Containers for polynomial functors

» Action containers
» Construction via universal property
» Closure properties

P 2-categorical interpretation:

» Equality of container morphisms is structured
P Interpretation as 2-endofunctors of groupoids

Containers: presentation of polynomials

Model of polymorphic data types

type constructors := endofunctors F, G : Set — Set

polymorphic functions := natural transformations a: F = G

Containers: presentation of polynomials

Model of polymorphic data types
type constructors := endofunctors F, G : Set — Set

polymorphic functions := natural transformations a: F = G

The nice class of polynomial endofunctors is described by containers:

a container its interpretation as a polynomial

(S<P) [S < PI(X) =Y (P(s) = X)
S:Set,P:S — Set oS

Non-polynomial endofunctors

Caveat
Not all interesting functors are covered by this framework.

Non-polynomial endofunctors

Caveat
Not all interesting functors are covered by this framework.

Example

Cyclic lists are not polynomial:

Cyc(X) ::ZX”/N where (X5 -y Xn) ~ (Xny X1, - -+ s Xn—1)
n:N

Same for unordered pairs, finite multisets, ...

Action containers

Definition
An action container F = (S < P17 G) consists of
shapes a set S
positions a family of sets P : 5 — Set
symmetries a family of groups G : S — Group

actions a family of group actions: for each s: S, o5 is an action of G5 on Ps

Action containers

Definition
An action container F = (S < P17 G) consists of
shapes a set S
positions a family of sets P : 5 — Set
symmetries a family of groups G : S — Group

actions a family of group actions: for each s: S, o5 is an action of G5 on Ps

Intuition
Symmetries tell us under which permutations the contained data is invariant.

Action containers

Definition
An action container F = (S < P17 G) consists of
shapes a set S
positions a family of sets P : 5 — Set
symmetries a family of groups G : S — Group

actions a family of group actions: for each s: S, o5 is an action of G5 on Ps

Intuition
Symmetries tell us under which permutations the contained data is invariant.

Interpretation

[SaPs? GI(X) =Y (Ps > X))/~ vesw:=3g: Gov=woos(g)
s:S

Example

Cyclic lists come from a Z-action on finite sets:
Cyc = (n: N<aFin(n) " Z) on: Z — S(Fin(n))
where o, is generated from the successor automorphism,

sucp, : Fin(n) ~ Fin(n)

on(k) :=sucpo---osuc
sucp(x) :==x+1 mod n (k) —_—

k times

Example

Cyclic lists come from a Z-action on finite sets:
Cyc = (n: N<aFin(n) " Z) on: Z — S(Fin(n))
where o, is generated from the successor automorphism,

sucp, : Fin(n) ~ Fin(n)

on(k) :=sucpo---osuc
sucp(x) :==x+1 mod n (k) —_—

k times

Similar approach for finite multisets, unordered tuples, etc.

Categories of containers

Recall
The category of Good ol’ Containers® is that of families of sets:

G ~ Fam(Set®P) ~ [Is Set®
S:Set

! Abbott, Altenkirch, and Ghani, “Containers: Constructing strictly positive types’.

Categories of containers

Recall
The category of Good ol’ Containers® is that of families of sets:

G ~ Fam(Set®P) ~ / [Is Set®

S:Set

Using machinery of displayed categories makes this very modular:
> Get the right notion of morphism for free

» Aligns with the primitives of type theory, makes formalization feasible

! Abbott, Altenkirch, and Ghani, “Containers: Constructing strictly positive types’.

Category of action containers
Definition
The category of action containers is
ActionCont := Fam(Action)

where Action is the total category of group actions

Action ::/ / GroupHom(G, &(P))
G:Group J P:Set°P

Corollary

Fam(Action) is the free coproduct completion of Action. It is thus closed under
(arbitrary) coproducts and products, and exponentiation by constants.

A model of strictly positive types

Action containers model non-inductive single-variable strictly positive types?

2Abbott, Altenkirch, and Ghani, “Containers: Constructing strictly positive types”.

A model of strictly positive types

Action containers model non-inductive single-variable strictly positive types?

» strictly positive: closure under products F x G, coproducts F + G and constant
exponentiation F.

P single-variable: extension to parametrized containers is straightforward

» non-inductive: we are working on finding smallest ©.F and largest vF fixpoint

2Abbott, Altenkirch, and Ghani, “Containers: Constructing strictly positive types”.

Properties of the interpretation

Action containers are inspired by quotient containers:3

Quotient containers are the subtype of action containers with faithful actions.

3 Abbott, Altenkirch, Ghani, and McBride, “Constructing Polymorphic Programs with Quotient Types".

4That's why morphisms of quotient container are equivalence classes!

Properties of the interpretation
Action containers are inspired by quotient containers:3

Quotient containers are the subtype of action containers with faithful actions.
Caveat
Interpretation [—] : ActionCont — Endo(Set) is not fully faithful.

Reason
Quotients in Set identify too many morphisms.*

3 Abbott, Altenkirch, Ghani, and McBride, “Constructing Polymorphic Programs with Quotient Types".

4That's why morphisms of quotient container are equivalence classes!

Properties of the interpretation
Action containers are inspired by quotient containers:3

Quotient containers are the subtype of action containers with faithful actions.
Caveat
Interpretation [—] : ActionCont — Endo(Set) is not fully faithful.

Reason
Quotients in Set identify too many morphisms.

Fix

» Do not quotient, but relate morphisms by 2-cells

4

» Interpret action containers in 2-endofunctors of groupoids.

» Go via symmetric containers

3 Abbott, Altenkirch, Ghani, and McBride, “Constructing Polymorphic Programs with Quotient Types".

4That's why morphisms of quotient container are equivalence classes!

Symmetric containers

Definition (Gylterud, “Symmetric Containers”)
A symmetric container (S < P) consists of
shapes an h-groupoid S
positions a function P : S — hSet

with interpretation in pseudofunctors of h-groupoids:

[S < P](X ZP

Intuition
Symmetries are paths between shapes.

2-categories of containers

Symmetric containers naturally form a 2-category:
2-cells := the h-set of homotopies of container morphisms

Interpretation is a 2-functor:

[—] : SymmCont — PsFun(hGpd, hGpd)

®Hofstra and Karvonen, “Inner automorphisms as 2-cells”.

2-categories of containers

Symmetric containers naturally form a 2-category:
2-cells := the h-set of homotopies of container morphisms

Interpretation is a 2-functor:
[—] : SymmCont — PsFun(hGpd, hGpd)

Action containers form a 2-category as well:

» 2-cells arise naturally from “group homomorphisms up to conjugation”>

» correspond closely to a similar relation for quotient containers

®Hofstra and Karvonen, “Inner automorphisms as 2-cells”.

Delooping of containers

Any group action determines a single-shape symmetric container:
» a group G defines a 1-object h-groupoid BG (a HIT)
» a G-action o defines a family Bo : BG — hSet

Delooping of containers

Any group action determines a single-shape symmetric container:
» a group G defines a 1-object h-groupoid BG (a HIT)
» a G-action o defines a family Bo : BG — hSet

Theorem
The above extends to a locally fully-faithful 2-functor

B* : ActionCont — SymmCont
B*(S<aPp? G) = (Y, sBGs <Bos)

P classifies morphisms of action containers

P lets us construct symmetric containers in practice

Example

The cyclic list container is isomorphic to a bundle over the circle,
Cyc = ((n,x : N x S') < Cover,(x))

where Cover,, : S — hSet is the n-fold cover of S1.

(Co)inductive types

Want to present (co)inductive data types as fixpoints of substitution:
wF = F[F[F[..]]]
Substitution should correspond to composition of container functors
[B*F[G]] ~ [B*F] o [B*G]

Candidates for pF, vF : ActionCont should follow from standard procedure®

6Abbott, Altenkirch, and Ghani, “Representing Nested Inductive Types Using W-Types".

(Co)inductive types

Want to present (co)inductive data types as fixpoints of substitution:
wF = F[F[F[..]]]
Substitution should correspond to composition of container functors
[B*F[G]] ~ [B*F] o [B*G]

Candidates for pF, vF : ActionCont should follow from standard procedure®

Problem

Finding the correct definition of substitution is tricky, and action containers might be
too strict to encode the necessary symmetries.

6Abbott, Altenkirch, and Ghani, “Representing Nested Inductive Types Using W-Types".

Strict symmetric containers

An h-groupoid G is strict if the set truncation map |—|o
> “G's connected components are pointed”
> “G is a collection of groups”
> “G is skeletal”

"Mirrors the case for pointed, connected groupoids, aka groups.

: G — ||Gl|o has a section

Strict symmetric containers

An h-groupoid G is strict if the set truncation map |—|o : G — ||G||p has a section
> “G's connected components are pointed”
> “G is a collection of groups”
> “G is skeletal”

Fact

Maps preserving the strict structure form a h-set. Thus, strict groupoids form a
1-category.’

"Mirrors the case for pointed, connected groupoids, aka groups.

Avoiding 2-categories

Proposition
Strict symmetric containers (=shapes are strict groupoids) form a 1-category.

But groupoid of shapes in the image of B* are strict, thus:

Theorem (WIP)

The 1-categories of action containers and strict symmetric containers are equivalent.

The plan
We can define substitution/u-/v-types/. . . for action containers if the corresponding
constructions on symmetric containers lift to strict ones.

Conclusion

For a write-up, and a fair share of displayed 2-category theory in Cubical Agda:

https://phijor.me/publications/
2025-data-types-with-symmetries-via-action-containers.html

Thank you!

https://phijor.me/publications/2025-data-types-with-symmetries-via-action-containers.html
https://phijor.me/publications/2025-data-types-with-symmetries-via-action-containers.html
https://phijor.me/publications/2025-data-types-with-symmetries-via-action-containers.html

Abbott, Michael, Thorsten Altenkirch, and Neil Ghani. “Containers: Constructing
strictly positive types”. In: Theoretical Computer Science 342.1 (2005), pp. 3-27.
1SSN: 0304-3975. por: 10.1016/j.tcs.2005.06.002.

— . "Representing Nested Inductive Types Using W-Types". In: Automata,
Languages and Programming. Springer Berlin Heidelberg, 2004, pp. 59-71. 1SBN:
9783540278368. DOI: 10.1007/978-3-540-27836-8_8.

Abbott, Michael, Thorsten Altenkirch, Neil Ghani, and Conor McBride.
“Constructing Polymorphic Programs with Quotient Types”. In: Proc. of 7th Int.
Conf. on Mathematics of Program Construction, MPC’04. Ed. by Dexter Kozen
and Carron Shankland. Vol. 3125. LNCS. Springer Berlin Heidelberg, 2004,

pp. 2-15. 1SBN: 9783540277644. DOI: 10.1007/978-3-540-27764-4_2.
Gylterud, Hakon Robbestad. “Symmetric Containers”. MA thesis. Department of
Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo,
2011. URL: https://hdl.handle.net/10852/10740.

Hofstra, Pieter and Martti Karvonen. “Inner automorphisms as 2-cells”. In: Theory
and Applications of Categories 42.2 (2024), pp. 19-40. eprint:
http://www.tac.mta.ca/tac/volumes/42/2/42-02abs.html. URL:
http://www.tac.mta.ca/tac/volumes/42/2/42-02.pdf.

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1007/978-3-540-27836-8_8
https://doi.org/10.1007/978-3-540-27764-4_2
https://hdl.handle.net/10852/10740
http://www.tac.mta.ca/tac/volumes/42/2/42-02abs.html
http://www.tac.mta.ca/tac/volumes/42/2/42-02.pdf

	Appendix
	References

