
1 / 18

Data Types with Symmetries via Action Containers
HoTT/UF 2025

Philipp Joram Niccolò Veltri

Tallinn University of Technology, Estonia

2025-04-16

2 / 18

Overview

Goal of the talk
Introduce action containers to model data types with symmetries

Contents
▶ Good ol’ Containers

▶ Endofunctors and algebraic data types
▶ Containers for polynomial functors

▶ Action containers
▶ Construction via universal property
▶ Closure properties

▶ 2-categorical interpretation:
▶ Equality of container morphisms is structured
▶ Interpretation as 2-endofunctors of groupoids

3 / 18

Containers: presentation of polynomials

Model of polymorphic data types

type constructors := endofunctors F ,G : Set → Set

polymorphic functions := natural transformations α : F ⇒ G

The nice class of polynomial endofunctors is described by containers:

a container

(S ◁ P)

S : Set,P : S → Set

its interpretation as a polynomial

JS ◁ PK(X) :=
∑
s:S

(P(s) → X)

3 / 18

Containers: presentation of polynomials

Model of polymorphic data types

type constructors := endofunctors F ,G : Set → Set

polymorphic functions := natural transformations α : F ⇒ G

The nice class of polynomial endofunctors is described by containers:

a container

(S ◁ P)

S : Set,P : S → Set

its interpretation as a polynomial

JS ◁ PK(X) :=
∑
s:S

(P(s) → X)

4 / 18

Non-polynomial endofunctors

Caveat
Not all interesting functors are covered by this framework.

Example

Cyclic lists are not polynomial:

Cyc(X) :=
∑
n:N

X n/∼ where (x1, . . . , xn) ∼ (xn, x1, . . . , xn−1)

Same for unordered pairs, finite multisets, . . .

4 / 18

Non-polynomial endofunctors

Caveat
Not all interesting functors are covered by this framework.

Example

Cyclic lists are not polynomial:

Cyc(X) :=
∑
n:N

X n/∼ where (x1, . . . , xn) ∼ (xn, x1, . . . , xn−1)

Same for unordered pairs, finite multisets, . . .

5 / 18

Action containers

Definition
An action container F = (S ◁ P ▷σ G) consists of

shapes a set S

positions a family of sets P : S → Set

symmetries a family of groups G : S → Group

actions a family of group actions: for each s : S , σs is an action of Gs on Ps

Intuition
Symmetries tell us under which permutations the contained data is invariant.

Interpretation

JS ◁ P ▷σ GK(X) :=
∑
s:S

(Ps → X)/ ∼s v ∼s w := ∃g : Gs . v = w ◦ σs(g)

5 / 18

Action containers

Definition
An action container F = (S ◁ P ▷σ G) consists of

shapes a set S

positions a family of sets P : S → Set

symmetries a family of groups G : S → Group

actions a family of group actions: for each s : S , σs is an action of Gs on Ps

Intuition
Symmetries tell us under which permutations the contained data is invariant.

Interpretation

JS ◁ P ▷σ GK(X) :=
∑
s:S

(Ps → X)/ ∼s v ∼s w := ∃g : Gs . v = w ◦ σs(g)

5 / 18

Action containers

Definition
An action container F = (S ◁ P ▷σ G) consists of

shapes a set S

positions a family of sets P : S → Set

symmetries a family of groups G : S → Group

actions a family of group actions: for each s : S , σs is an action of Gs on Ps

Intuition
Symmetries tell us under which permutations the contained data is invariant.

Interpretation

JS ◁ P ▷σ GK(X) :=
∑
s:S

(Ps → X)/ ∼s v ∼s w := ∃g : Gs . v = w ◦ σs(g)

6 / 18

Example

Cyclic lists come from a Z-action on finite sets:

Cyc = (n : N ◁ Fin(n) ▷σn Z) σn : Z → S(Fin(n))

where σn is generated from the successor automorphism,

sucn : Fin(n) ≃ Fin(n)

sucn(x) := x + 1 mod n
σn(k) := sucn ◦ · · · ◦ sucn︸ ︷︷ ︸

k times

Similar approach for finite multisets, unordered tuples, etc.

6 / 18

Example

Cyclic lists come from a Z-action on finite sets:

Cyc = (n : N ◁ Fin(n) ▷σn Z) σn : Z → S(Fin(n))

where σn is generated from the successor automorphism,

sucn : Fin(n) ≃ Fin(n)

sucn(x) := x + 1 mod n
σn(k) := sucn ◦ · · · ◦ sucn︸ ︷︷ ︸

k times

Similar approach for finite multisets, unordered tuples, etc.

7 / 18

Categories of containers

Recall
The category of Good ol’ Containers1 is that of families of sets:

G ≃ Fam(Setop) ≃
∫
S :Set

∏
S Set

op

Using machinery of displayed categories makes this very modular:

▶ Get the right notion of morphism for free

▶ Aligns with the primitives of type theory, makes formalization feasible

1Abbott, Altenkirch, and Ghani, “Containers: Constructing strictly positive types”.

7 / 18

Categories of containers

Recall
The category of Good ol’ Containers1 is that of families of sets:

G ≃ Fam(Setop) ≃
∫
S :Set

∏
S Set

op

Using machinery of displayed categories makes this very modular:

▶ Get the right notion of morphism for free

▶ Aligns with the primitives of type theory, makes formalization feasible

1Abbott, Altenkirch, and Ghani, “Containers: Constructing strictly positive types”.

8 / 18

Category of action containers

Definition
The category of action containers is

ActionCont := Fam(Action)

where Action is the total category of group actions

Action :=

∫
G :Group

∫
P:Setop

GroupHom(G ,S(P))

Corollary

Fam(Action) is the free coproduct completion of Action. It is thus closed under
(arbitrary) coproducts and products, and exponentiation by constants.

9 / 18

A model of strictly positive types

Action containers model non-inductive single-variable strictly positive types.2

▶ strictly positive: closure under products F × G , coproducts F + G and constant
exponentiation F J .

▶ single-variable: extension to parametrized containers is straightforward

▶ non-inductive: we are working on finding smallest µF and largest νF fixpoint

2Abbott, Altenkirch, and Ghani, “Containers: Constructing strictly positive types”.

9 / 18

A model of strictly positive types

Action containers model non-inductive single-variable strictly positive types.2

▶ strictly positive: closure under products F × G , coproducts F + G and constant
exponentiation F J .

▶ single-variable: extension to parametrized containers is straightforward

▶ non-inductive: we are working on finding smallest µF and largest νF fixpoint

2Abbott, Altenkirch, and Ghani, “Containers: Constructing strictly positive types”.

10 / 18

Properties of the interpretation

Action containers are inspired by quotient containers:3

Quotient containers are the subtype of action containers with faithful actions.

Caveat
Interpretation J−K : ActionCont → Endo(Set) is not fully faithful.

Reason
Quotients in Set identify too many morphisms.4

Fix
▶ Do not quotient, but relate morphisms by 2-cells

▶ Interpret action containers in 2-endofunctors of groupoids.

▶ Go via symmetric containers

3Abbott, Altenkirch, Ghani, and McBride, “Constructing Polymorphic Programs with Quotient Types”.
4That’s why morphisms of quotient container are equivalence classes!

10 / 18

Properties of the interpretation

Action containers are inspired by quotient containers:3

Quotient containers are the subtype of action containers with faithful actions.

Caveat
Interpretation J−K : ActionCont → Endo(Set) is not fully faithful.

Reason
Quotients in Set identify too many morphisms.4

Fix
▶ Do not quotient, but relate morphisms by 2-cells

▶ Interpret action containers in 2-endofunctors of groupoids.

▶ Go via symmetric containers

3Abbott, Altenkirch, Ghani, and McBride, “Constructing Polymorphic Programs with Quotient Types”.
4That’s why morphisms of quotient container are equivalence classes!

10 / 18

Properties of the interpretation

Action containers are inspired by quotient containers:3

Quotient containers are the subtype of action containers with faithful actions.

Caveat
Interpretation J−K : ActionCont → Endo(Set) is not fully faithful.

Reason
Quotients in Set identify too many morphisms.4

Fix
▶ Do not quotient, but relate morphisms by 2-cells

▶ Interpret action containers in 2-endofunctors of groupoids.

▶ Go via symmetric containers

3Abbott, Altenkirch, Ghani, and McBride, “Constructing Polymorphic Programs with Quotient Types”.
4That’s why morphisms of quotient container are equivalence classes!

11 / 18

Symmetric containers

Definition (Gylterud, “Symmetric Containers”)

A symmetric container (S ◁ P) consists of

shapes an h-groupoid S

positions a function P : S → hSet

with interpretation in pseudofunctors of h-groupoids:

JS ◁ PK(X) :=
∑
s:S

P(s) → X

Intuition
Symmetries are paths between shapes.

12 / 18

2-categories of containers

Symmetric containers naturally form a 2-category:

2-cells := the h-set of homotopies of container morphisms

Interpretation is a 2-functor:

J−K : SymmCont → PsFun(hGpd, hGpd)

Action containers form a 2-category as well:

▶ 2-cells arise naturally from “group homomorphisms up to conjugation”5

▶ correspond closely to a similar relation for quotient containers

5Hofstra and Karvonen, “Inner automorphisms as 2-cells”.

12 / 18

2-categories of containers

Symmetric containers naturally form a 2-category:

2-cells := the h-set of homotopies of container morphisms

Interpretation is a 2-functor:

J−K : SymmCont → PsFun(hGpd, hGpd)

Action containers form a 2-category as well:

▶ 2-cells arise naturally from “group homomorphisms up to conjugation”5

▶ correspond closely to a similar relation for quotient containers

5Hofstra and Karvonen, “Inner automorphisms as 2-cells”.

13 / 18

Delooping of containers

Any group action determines a single-shape symmetric container:

▶ a group G defines a 1-object h-groupoid BG (a HIT)

▶ a G -action σ defines a family B̄σ : BG → hSet

Theorem
The above extends to a locally fully-faithful 2-functor

B∗ : ActionCont → SymmCont

B∗(S ◁ P ▷σ G) =
(∑

s:S BGs ◁ B̄σs
)

▶ classifies morphisms of action containers

▶ lets us construct symmetric containers in practice

13 / 18

Delooping of containers

Any group action determines a single-shape symmetric container:

▶ a group G defines a 1-object h-groupoid BG (a HIT)

▶ a G -action σ defines a family B̄σ : BG → hSet

Theorem
The above extends to a locally fully-faithful 2-functor

B∗ : ActionCont → SymmCont

B∗(S ◁ P ▷σ G) =
(∑

s:S BGs ◁ B̄σs
)

▶ classifies morphisms of action containers

▶ lets us construct symmetric containers in practice

14 / 18

Example

The cyclic list container is isomorphic to a bundle over the circle,

Cyc ∼=
(
(n, x : N× S1) ◁ Covern(x)

)
where Covern : S1 → hSet is the n-fold cover of S1.

15 / 18

(Co)inductive types

Want to present (co)inductive data types as fixpoints of substitution:

µF ∼= F [F [F [. . .]]]

Substitution should correspond to composition of container functors

JB∗F [G]K ≃ JB∗F K ◦ JB∗GK

Candidates for µF , νF : ActionCont should follow from standard procedure6

Problem
Finding the correct definition of substitution is tricky, and action containers might be
too strict to encode the necessary symmetries.

6Abbott, Altenkirch, and Ghani, “Representing Nested Inductive Types Using W-Types”.

15 / 18

(Co)inductive types

Want to present (co)inductive data types as fixpoints of substitution:

µF ∼= F [F [F [. . .]]]

Substitution should correspond to composition of container functors

JB∗F [G]K ≃ JB∗F K ◦ JB∗GK

Candidates for µF , νF : ActionCont should follow from standard procedure6

Problem
Finding the correct definition of substitution is tricky, and action containers might be
too strict to encode the necessary symmetries.

6Abbott, Altenkirch, and Ghani, “Representing Nested Inductive Types Using W-Types”.

16 / 18

Strict symmetric containers

An h-groupoid G is strict if the set truncation map |−|0 : G → ∥G∥0 has a section

▶ “G ’s connected components are pointed”

▶ “G is a collection of groups”

▶ “G is skeletal”

Fact
Maps preserving the strict structure form a h-set. Thus, strict groupoids form a
1-category.7

7Mirrors the case for pointed, connected groupoids, aka groups.

16 / 18

Strict symmetric containers

An h-groupoid G is strict if the set truncation map |−|0 : G → ∥G∥0 has a section

▶ “G ’s connected components are pointed”

▶ “G is a collection of groups”

▶ “G is skeletal”

Fact
Maps preserving the strict structure form a h-set. Thus, strict groupoids form a
1-category.7

7Mirrors the case for pointed, connected groupoids, aka groups.

17 / 18

Avoiding 2-categories

Proposition

Strict symmetric containers (=shapes are strict groupoids) form a 1-category.

But groupoid of shapes in the image of B∗ are strict, thus:

Theorem (WIP)

The 1-categories of action containers and strict symmetric containers are equivalent.

The plan

We can define substitution/µ-/ν-types/. . . for action containers if the corresponding
constructions on symmetric containers lift to strict ones.

18 / 18

Conclusion

For a write-up, and a fair share of displayed 2-category theory in Cubical Agda:

https://phijor.me/publications/

2025-data-types-with-symmetries-via-action-containers.html

Thank you!

https://phijor.me/publications/2025-data-types-with-symmetries-via-action-containers.html
https://phijor.me/publications/2025-data-types-with-symmetries-via-action-containers.html
https://phijor.me/publications/2025-data-types-with-symmetries-via-action-containers.html

1 / 1

Abbott, Michael, Thorsten Altenkirch, and Neil Ghani. “Containers: Constructing
strictly positive types”. In: Theoretical Computer Science 342.1 (2005), pp. 3–27.
issn: 0304-3975. doi: 10.1016/j.tcs.2005.06.002.
— .“Representing Nested Inductive Types Using W-Types”. In: Automata,
Languages and Programming. Springer Berlin Heidelberg, 2004, pp. 59–71. isbn:
9783540278368. doi: 10.1007/978-3-540-27836-8_8.
Abbott, Michael, Thorsten Altenkirch, Neil Ghani, and Conor McBride.
“Constructing Polymorphic Programs with Quotient Types”. In: Proc. of 7th Int.
Conf. on Mathematics of Program Construction, MPC’04. Ed. by Dexter Kozen
and Carron Shankland. Vol. 3125. LNCS. Springer Berlin Heidelberg, 2004,
pp. 2–15. isbn: 9783540277644. doi: 10.1007/978-3-540-27764-4_2.
Gylterud, Håkon Robbestad. “Symmetric Containers”. MA thesis. Department of
Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo,
2011. url: https://hdl.handle.net/10852/10740.
Hofstra, Pieter and Martti Karvonen. “Inner automorphisms as 2-cells”. In: Theory
and Applications of Categories 42.2 (2024), pp. 19–40. eprint:
http://www.tac.mta.ca/tac/volumes/42/2/42-02abs.html. url:
http://www.tac.mta.ca/tac/volumes/42/2/42-02.pdf.

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1007/978-3-540-27836-8_8
https://doi.org/10.1007/978-3-540-27764-4_2
https://hdl.handle.net/10852/10740
http://www.tac.mta.ca/tac/volumes/42/2/42-02abs.html
http://www.tac.mta.ca/tac/volumes/42/2/42-02.pdf

	Appendix
	References

