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Our result

Theorem

For some n ∈ {1, 2}, we have an isomorphism π5S3 ∼= Z/nZ.

Corollary

Therefore also π6S4 ∼= Z/nZ, using the quaternionic Hopf fibration, from
the Cayley-Dickson construction (Buchholtz and Rijke 2018).

Motivation

By Freudenthal, π6S4 is equivalent to the second stable homotopy group
of spheres: πS

2 :≡ limn→∞ πn+2Sn.
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Pushouts

A C

B P

g

f inr

inl

⌜

Definition

Given maps f : A → B, g : A → C , we define
the pushout P as a higher inductive type:

inl : B → P inr : C → P

push : Πa:A inl (f (a)) = inr (g (a))

A B

1 coff

f

⌜

Definition

Given a map f : A → B, we define the cofiber
coff as the pushout of the map A → 1 with f .

A 1

1 ΣA

S

N

⌜

Definition

Given a type A, we define the suspension ΣA as
the pushout of the map A → 1 with itself. We
write merid : A → N =ΣA S.
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Spheres and homotopy groups

Definition

We define the n-sphere Sn as an iterated suspension:

S0 :≡ bool

Sn+1 :≡ ΣSn

Definition

Given a pointed type A, we define the nth loop space ΩnA as the type of
pointed maps Sn →• A, itself pointed by the constant map at a0.

Definition

Given a pointed type A, we define its n-th homotopy group πnA (n ≥ 1) as
the set truncation ∥ΩnA∥0. We give this a group structure equivalent to
composition on iterated identity types. . .
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Fibers and connectedness

Definition

Given a map f : A → B and a point y : B, we
define the fiber fibf (y) :≡ Σx :A f (x) = y . When B
is pointed we may just write fibf .

fibf (y) A

1 B

⌟
f

y

Definition

We say a type A is n-connected if its n-truncation is contractible:
isConnectedn(A) :≡ isContr (∥A∥n).

Definition

We say a map A → B is n-connected if all its fibers are n-connected:
Πy :B isConnectedn(fibf (y)).

Tom Jack, Axel Ljungström Towards computing π6S4 in HoTT HoTT/UF 2025 6 / 18



Fibers and connectedness

Definition

Given a map f : A → B and a point y : B, we
define the fiber fibf (y) :≡ Σx :A f (x) = y . When B
is pointed we may just write fibf .

fibf (y) A

1 B

⌟
f

y

Definition

We say a type A is n-connected if its n-truncation is contractible:
isConnectedn(A) :≡ isContr (∥A∥n).

Definition

We say a map A → B is n-connected if all its fibers are n-connected:
Πy :B isConnectedn(fibf (y)).

Tom Jack, Axel Ljungström Towards computing π6S4 in HoTT HoTT/UF 2025 6 / 18



Fibers and connectedness

Definition

Given a map f : A → B and a point y : B, we
define the fiber fibf (y) :≡ Σx :A f (x) = y . When B
is pointed we may just write fibf .

fibf (y) A

1 B

⌟
f

y

Definition

We say a type A is n-connected if its n-truncation is contractible:
isConnectedn(A) :≡ isContr (∥A∥n).

Definition

We say a map A → B is n-connected if all its fibers are n-connected:
Πy :B isConnectedn(fibf (y)).

Tom Jack, Axel Ljungström Towards computing π6S4 in HoTT HoTT/UF 2025 6 / 18



The long exact sequence in homotopy groups

Lemma (UF13, 8.4.6)

If f is n-connected, then it induces isomorphisms πkA ∼= πkB for k ≤ n.

Theorem (UF13, 8.4.6)

Given a pointed map f : A →• B, we have an exact sequence in homotopy
groups:

. . .

→ πkfibf → πkA → πkB

→ . . .

→ π1fibf → π1A → π1B
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πkSn in HoTT/UF

Theorem (Licata and Shulman 2013, Licata and Brunerie 2013)

πnSn ∼= Z

Theorem (Brunerie 2016)

For some n ∈ Z, π4S3 ∼= Z/nZ. Also, n = 2.

Corollary

πS
1 :≡ limn→∞ πn+1Sn ∼= Z/2Z

π5S4 ∼= Z/2Z
π4S2 ∼= Z/2Z
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π4S3 in Cubical Agda

Theorem (Ljungström and Mörtberg 2023, mechanised and
computer-assisted in Cubical Agda)

For some n ∈ Z, π4S3 ∼= Z/nZ, and the computer says refl : n ≡ 2.
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Whitehead’s EHP exact sequence

Theorem (Whitehead 1953, but see Devalapurkar and Haine 2021)

We have an exact sequence:

π3n−2Sn → . . .

→ πqSn
E→ πq+1Sn+1 H→ πqS2n

P→ πq−1Sn → . . .
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Theorem (Whitehead 1953, but see Devalapurkar and Haine 2021)

We have an exact sequence:

π3n−2Sn → . . .

→ πqSn
E→ πq+1Sn+1 H→ πqS2n

P→ πq−1Sn → . . .

Corollary (See Hatcher 2002 or Whitehead 1978)

We have a surjection π4S2 ↠ π5S3, from:

π4S2
E→ π5S3

H→ π4S4

P→ π3S2 → π4S3 → 1
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Whitehead’s EHP exact sequence

Theorem (Whitehead 1953, but see Devalapurkar and Haine 2021)

We have an exact sequence:

π3n−2Sn → . . .

→ πqSn
E→ πq+1Sn+1 H→ πqS2n

P→ πq−1Sn → . . .

Remark

Cagne et al. 2024 claim their exact sequence can reproduce Whitehead’s
EHP, following Lang 1973. It should also extend beyond EHP somehow. . .
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Gray’s relative James construction: the pinch map

A B 1

1 coff ΣA

f

⌜

pinchf

⌜

Definition

Given a map f : A → B, we define the
“pinch map” pinchf : coff → ΣA as follows:

pinchf (inl(∗)) :≡ N pinchf (inr(b)) :≡ S

appinchf (push(a)) :≡ merid(a)

Remark

We now want to understand the fiber of the pinch map fibpinchf , in order
to get information from the long exact sequence in homotopy groups:

. . . → πkfibpinchf → πkcoff
πkpinchf→ πkΣA → . . .

Classically, Gray 1973 introduced this technique. Related but more
sophisticated techniques have been used recently by homotopy theorists:
see Yang, Mukai, and Wu 2024, Zhu and Jin 2024, Zhu 2024.
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Gray’s relative James construction

Definition (Gray 1973)

There is a relative James construction, which is equivalent to the fiber of
the pinch map.

Definition (Gray 1973)

There is a relative James filtration, providing a sequence of increasingly
accurate approximations to the relative James construction.

Lemma (Gray 1973, corollary 5.8)

When the types are suspensions, the second stage of the relative James
filtration is equivalent to the cofiber of a certain generalized Whitehead
product.

Remark

Baker’s “fiber HIT heuristic” (touched on in Baker 2024) should produce a
relative James construction HIT.
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Main lemma: statement

Lemma (Adapted from Gray 1973, corollary 5.8)

Suppose given pointed types A,B and a map f : ΣA → ΣB. If A is
(a− 1)-connected, then we have a 2a-connected map

γ : cof [idΣB ,f ] → fibpinchf
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Main lemma: proof sketch

We construct two pushout squares:

ΣA ∨ ΣA ΣA

ΣB × ΣA cof [idΣB ,f ]

(f×id)◦ι∨

∇

⌜

ΣA× ΩΣ2A ΩΣ2A

ΣB × ΩΣ2A fibpinchf

f×id

(x ,p)7→σ(x)·p

⌜

We then define a map γ : cof [idΣB ,f ] → fibpinchf induced by a map of spans:

ΣB × ΣA ΣA ∨ ΣA ΣA

ΣB × ΩΣ2A ΣA× ΩΣ2A ΩΣ2A

id×σΣA (id×σΣA)◦ι∨ σΣA

Since σΣA : ΣA → ΩΣ2A and ι∨ : ΣA∨ΣA → ΣA×ΣA are 2a-connected,
all three vertical maps will be 2a-connected, and so γ will be too.
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Applying the main lemma

Recall the Brunerie element [ι2, ι2] : S3 →• S2 (writing ι2 :≡ idS2 .) We will
apply the main lemma to this map.

Lemma (Brunerie 2016)

We have a 4-connected map cof [ι2,ι2] → ΩS3. In particular:

π3cof [ι2,ι2]
∼= π4S3

π4cof [ι2,ι2]
∼= π5S3
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Applying the main lemma

Construction

Applying the main lemma with pinch[ι2,ι2] : cof [ι2,ι2] → S4, we get a
4-connected map γ : cof [ι2,[ι2,ι2]] → fibpinch[ι2,ι2]

. This gives an exact
sequence:

π5cof [ι2,ι2] → π5S4

→ π4cof [ι2,[ι2,ι2]] → π4cof [ι2,ι2] → π4S4

→ π3cof [ι2,[ι2,ι2]] → π3cof [ι2,ι2] → 1

Lemma

Now, using results by Brunerie and (very recently!) by Ljungström:

[ι2, [ι2, ι2]] = [ι2,±2η] = ±2[ι2, η]

which must be trivial since π4S2 ∼= Z/2Z. Therefore cof [ι2,[ι2,ι2]] ≃ S2 ∨ S5
(at least merely. . . )
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Applying the main lemma

Proof of main theorem.

We now have this EHP-like exact sequence:

π5S4

→ π4S2 → π5S3 → π4S4

→ π3S2 → π4S3 → 1
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Applying the main lemma

Proof of main theorem.

We now have this EHP-like exact sequence:

π5S4

∂→ π4S2 ↠ π5S3
0→ π4S4

×2
↪→ π3S2

%2
↠ π4S3 → 1

Since both π5S4 and π4S2 are isomorphic to Z/2Z, we are done: we have
some ∂ : Z/2Z → Z/2Z, and we define n :≡ ∂(1) ∈ {1, 2}. Then since
π5S3 ∼= (Z/2Z)/Im(∂), we have π5S3 ∼= Z/nZ.
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Future work?

Prove n = 2. . .

Mechanise this in Cubical Agda!

Other applications of Gray’s corollary?

Higher dimensions: higher stages of the relative James
filtration? See Yang, Mukai, and Wu 2024, Zhu and
Jin 2024, Zhu 2024.

Higher order: analogues for higher order Hopf maps?
See Devalapurkar and Haine 2021

What’s going on here?

0 ∼= πS
4
∼= πS

5
∼= πS

12

∼= π19S7 ∼= π20S8 ∼= π21S9

Figure:
Wikipedia
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Questions?
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