Towards computing $\pi_6 \mathbb{S}^4$ in HoTT Beyond EHP via the relative James construction

Tom Jack pi3js2@proton.me Axel Ljungström ¹ axel.ljungstrom@math.su.se

¹Stockholm University, Sweden

HoTT/UF 2025

Our result

Theorem

For some $n \in \{1,2\}$, we have an isomorphism $\pi_5 \mathbb{S}^3 \cong \mathbb{Z}/n\mathbb{Z}$.

Our result

Theorem

For some $n \in \{1, 2\}$, we have an isomorphism $\pi_5 \mathbb{S}^3 \cong \mathbb{Z}/n\mathbb{Z}$.

Corollary

Therefore also $\pi_6 \mathbb{S}^4 \cong \mathbb{Z}/n\mathbb{Z}$, using the quaternionic Hopf fibration, from the Cayley-Dickson construction (Buchholtz and Rijke 2018).

Our result

Theorem

For some $n \in \{1, 2\}$, we have an isomorphism $\pi_5 \mathbb{S}^3 \cong \mathbb{Z}/n\mathbb{Z}$.

Corollary

Therefore also $\pi_6 \mathbb{S}^4 \cong \mathbb{Z}/n\mathbb{Z}$, using the quaternionic Hopf fibration, from the Cayley-Dickson construction (Buchholtz and Rijke 2018).

Motivation

By Freudenthal, $\pi_6 \mathbb{S}^4$ is equivalent to the second stable homotopy group of spheres: $\pi_2^S :\equiv \lim_{n \to \infty} \pi_{n+2} \mathbb{S}^n$.

Outline

Background

- Basic definitions
- Some history of $\pi_k \mathbb{S}^n$
- Whitehead's EHP exact sequence
- Gray's relative James construction

Our result

- Main lemma: Gray's corollary
- Application to $\pi_5 \mathbb{S}^3 \cong \pi_6 \mathbb{S}^4 \cong \mathbb{Z}/n\mathbb{Z}$
- Future work?

Pushouts

Definition

Given maps $f : A \rightarrow B$, $g : A \rightarrow C$, we define the pushout *P* as a higher inductive type:

inl : $B \to P$ inr : $C \to P$ push : $\Pi_{a:A}$ inl (f(a)) = inr(g(a))

Pushouts

Definition

Given maps $f : A \rightarrow B$, $g : A \rightarrow C$, we define the pushout *P* as a higher inductive type:

inl : $B \to P$ inr : $C \to P$ push : $\Pi_{a:A}$ inl (f(a)) = inr(g(a))

Definition

Given a map $f : A \to B$, we define the cofiber cof_f as the pushout of the map $A \to 1$ with f.

Pushouts

Definition

Given maps $f : A \rightarrow B$, $g : A \rightarrow C$, we define the pushout *P* as a higher inductive type:

inl : $B \to P$ inr : $C \to P$ push : $\Pi_{a:A}$ inl (f(a)) = inr(g(a))

Definition

Given a map $f : A \to B$, we define the cofiber cof_f as the pushout of the map $A \to 1$ with f.

Definition

Given a type A, we define the suspension ΣA as the pushout of the map $A \rightarrow 1$ with itself. We write merid : $A \rightarrow N =_{\Sigma A} S$.

Spheres and homotopy groups

Definition

We define the *n*-sphere \mathbb{S}^n as an iterated suspension:

 $\mathbb{S}^0 :\equiv \mathsf{bool}$ $\mathbb{S}^{n+1} :\equiv \Sigma \mathbb{S}^n$

Spheres and homotopy groups

Definition

We define the *n*-sphere \mathbb{S}^n as an iterated suspension:

 $\mathbb{S}^0 :\equiv \mathsf{bool}$ $\mathbb{S}^{n+1} :\equiv \Sigma \mathbb{S}^n$

Definition

Given a pointed type A, we define the *n*th loop space $\Omega^n A$ as the type of pointed maps $\mathbb{S}^n \to A$, itself pointed by the constant map at a_0 .

Spheres and homotopy groups

Definition

We define the *n*-sphere \mathbb{S}^n as an iterated suspension:

 $\mathbb{S}^0 :\equiv \mathsf{bool}$ $\mathbb{S}^{n+1} :\equiv \Sigma \mathbb{S}^n$

Definition

Given a pointed type A, we define the *n*th loop space $\Omega^n A$ as the type of pointed maps $\mathbb{S}^n \to A$, itself pointed by the constant map at a_0 .

Definition

Given a pointed type A, we define its *n*-th homotopy group $\pi_n A$ $(n \ge 1)$ as the set truncation $\|\Omega^n A\|_0$. We give this a group structure equivalent to composition on iterated identity types...

Fibers and connectedness

Definition

Given a map $f : A \to B$ and a point y : B, we define the fiber fib_f(y) := $\sum_{x:A} f(x) = y$. When B is pointed we may just write fib_f.

Fibers and connectedness

Definition

Given a map $f : A \to B$ and a point y : B, we define the fiber $\operatorname{fib}_f(y) :\equiv \sum_{x:A} f(x) = y$. When B is pointed we may just write fib_f.

Definition

We say a type A is *n*-connected if its *n*-truncation is contractible: isConnected_n(A) := isContr ($||A||_n$).

Fibers and connectedness

Definition

Given a map $f : A \to B$ and a point y : B, we define the fiber $\operatorname{fib}_f(y) :\equiv \sum_{x:A} f(x) = y$. When B is pointed we may just write fib_f.

Definition

We say a type A is *n*-connected if its *n*-truncation is contractible: isConnected_n(A) := isContr ($||A||_n$).

Definition

We say a map $A \rightarrow B$ is *n*-connected if all its fibers are *n*-connected: $\prod_{y:B}$ isConnected_n(fib_f(y)). The long exact sequence in homotopy groups

Lemma (UF13, 8.4.6)

If f is n-connected, then it induces isomorphisms $\pi_k A \cong \pi_k B$ for $k \leq n$.

The long exact sequence in homotopy groups

. . .

Lemma (UF13, 8.4.6)

If f is n-connected, then it induces isomorphisms $\pi_k A \cong \pi_k B$ for $k \leq n$.

Theorem (UF13, 8.4.6)

Given a pointed map $f : A \rightarrow_{\bullet} B$, we have an exact sequence in homotopy groups:

$\pi_k \mathbb{S}^n$ in HoTT/UF

Theorem (Licata and Shulman 2013, Licata and Brunerie 2013) $\pi_n \mathbb{S}^n \cong \mathbb{Z}$

$\pi_k \mathbb{S}^n$ in HoTT/UF

Theorem (Licata and Shulman 2013, Licata and Brunerie 2013) $\pi_n \mathbb{S}^n \cong \mathbb{Z}$

Theorem (Brunerie 2016)

For some $n \in \mathbb{Z}, \pi_4 \mathbb{S}^3 \cong \mathbb{Z}/n\mathbb{Z}$. Also, n = 2.

$\pi_k \mathbb{S}^n$ in HoTT/UF

Theorem (Licata and Shulman 2013, Licata and Brunerie 2013) $\pi_n \mathbb{S}^n \cong \mathbb{Z}$

Theorem (Brunerie 2016)

For some $n \in \mathbb{Z}, \pi_4 \mathbb{S}^3 \cong \mathbb{Z}/n\mathbb{Z}$. Also, n = 2.

Corollary

•
$$\pi_1^{\mathsf{S}} :\equiv \lim_{n \to \infty} \pi_{n+1} \mathbb{S}^n \cong \mathbb{Z}/2\mathbb{Z}$$

• $\pi_5 \mathbb{S}^4 \cong \mathbb{Z}/2\mathbb{Z}$
• $\pi_4 \mathbb{S}^2 \cong \mathbb{Z}/2\mathbb{Z}$

Theorem (Ljungström and Mörtberg 2023, mechanised and computer-assisted in Cubical Agda)

For some $n \in \mathbb{Z}$, $\pi_4 \mathbb{S}^3 \cong \mathbb{Z}/n\mathbb{Z}$, and the computer says refl : $n \equiv 2$.

Whitehead's EHP exact sequence

Theorem (Whitehead 1953, but see Devalapurkar and Haine 2021) We have an exact sequence:

Whitehead's EHP exact sequence

Theorem (Whitehead 1953, but see Devalapurkar and Haine 2021) We have an exact sequence:

Corollary (See Hatcher 2002 or Whitehead 1978) We have a surjection $\pi_4 \mathbb{S}^2 \twoheadrightarrow \pi_5 \mathbb{S}^3$, from: $\pi_4 \mathbb{S}^2 \xrightarrow{\mathsf{E}} \pi_5 \mathbb{S}^3 \xrightarrow{\mathsf{H}} \pi_4 \mathbb{S}^4$ $\xrightarrow{P} \pi_3 \mathbb{S}^2 \longrightarrow \pi_4 \mathbb{S}^3 \longrightarrow 1$

Whitehead's EHP exact sequence

Theorem (Whitehead 1953, but see Devalapurkar and Haine 2021) We have an exact sequence:

Remark

Cagne et al. 2024 claim their exact sequence can reproduce Whitehead's EHP, following Lang 1973. It should also extend beyond EHP somehow...

Gray's relative James construction: the pinch map

Definition

Given a map $f : A \rightarrow B$, we define the "pinch map" pinch_f : cof_f $\rightarrow \Sigma A$ as follows:

$$pinch_f(inl(*)) :\equiv N \quad pinch_f(inr(b)) :\equiv S$$

 $ap_{pinch_f}(push(a)) :\equiv merid(a)$

Gray's relative James construction: the pinch map

Definition

Given a map $f : A \rightarrow B$, we define the "pinch map" pinch_f : cof_f $\rightarrow \Sigma A$ as follows:

$$pinch_f(inl(*)) :\equiv N \quad pinch_f(inr(b)) :\equiv S$$

 $ap_{pinch_f}(push(a)) :\equiv merid(a)$

Remark

We now want to understand the fiber of the pinch map fib_{pinch_f} , in order to get information from the long exact sequence in homotopy groups:

$$\ldots \rightarrow \pi_k \operatorname{fib}_{\operatorname{pinch}_f} \rightarrow \pi_k \operatorname{cof}_f \stackrel{\pi_k \operatorname{pinch}_f}{\rightarrow} \pi_k \Sigma A \rightarrow \ldots$$

Classically, Gray 1973 introduced this technique. Related but more sophisticated techniques have been used recently by homotopy theorists: see Yang, Mukai, and Wu 2024, Zhu and Jin 2024, Zhu 2024.

Tom Jack, Axel Ljungström

Towards computing $\pi_6 S^4$ in HoTT

Definition (Gray 1973)

There is a relative James construction, which is equivalent to the fiber of the pinch map.

Definition (Gray 1973)

There is a relative James construction, which is equivalent to the fiber of the pinch map.

Definition (Gray 1973)

There is a relative James filtration, providing a sequence of increasingly accurate approximations to the relative James construction.

Definition (Gray 1973)

There is a relative James construction, which is equivalent to the fiber of the pinch map.

Definition (Gray 1973)

There is a relative James filtration, providing a sequence of increasingly accurate approximations to the relative James construction.

Lemma (Gray 1973, corollary 5.8)

When the types are suspensions, the second stage of the relative James filtration is equivalent to the cofiber of a certain generalized Whitehead product.

Definition (Gray 1973)

There is a relative James construction, which is equivalent to the fiber of the pinch map.

Definition (Gray 1973)

There is a relative James filtration, providing a sequence of increasingly accurate approximations to the relative James construction.

Lemma (Gray 1973, corollary 5.8)

When the types are suspensions, the second stage of the relative James filtration is equivalent to the cofiber of a certain generalized Whitehead product.

Remark

Baker's "fiber HIT heuristic" (touched on in Baker 2024) should produce a relative James construction HIT.

Tom Jack, Axel Ljungström

Towards computing $\pi_6 S^4$ in HoT

Lemma (Adapted from Gray 1973, corollary 5.8)

Suppose given pointed types A, B and a map $f : \Sigma A \rightarrow \Sigma B$. If A is (a - 1)-connected, then we have a 2a-connected map

 $\gamma: \mathrm{cof}_{[\mathrm{id}_{\Sigma B}, f]} \to \mathrm{fib}_{\mathrm{pinch}_f}$

Main lemma: proof sketch

We construct two pushout squares:

14 / 18

Main lemma: proof sketch

We construct two pushout squares:

$$\begin{array}{c|c} \Sigma A \lor \Sigma A & \xrightarrow{\nabla} \Sigma A & \Sigma A \times \Omega \Sigma^2 A \xrightarrow{(x,p) \mapsto \sigma(x) \cdot p} \Omega \Sigma^2 A \\ (f \times \mathrm{id})_{\circ \iota^{\vee}} \downarrow & & & & \\ \Sigma B \times \Sigma A & \longrightarrow \mathrm{cof}_{[\mathrm{id}_{\Sigma B}, f]} & \Sigma B \times \Omega \Sigma^2 A & \longrightarrow \mathrm{fib}_{\mathrm{pinch}_f} \end{array}$$

We then define a map $\gamma: \mathrm{cof}_{[\mathrm{id}_{\Sigma B}, f]} \to \mathrm{fib}_{\mathrm{pinch}_f}$ induced by a map of spans:

$$\begin{array}{cccc} \Sigma B \times \Sigma A & \longleftarrow & \Sigma A \lor \Sigma A & \longrightarrow & \Sigma A \\ & & \downarrow^{\mathsf{id} \times \sigma_{\Sigma A}} & & \downarrow^{(\mathsf{id} \times \sigma_{\Sigma A}) \circ \iota^{\vee}} & \downarrow^{\sigma_{\Sigma A}} \\ \Sigma B \times \Omega \Sigma^2 A & \longleftarrow & \Sigma A \times \Omega \Sigma^2 A & \longrightarrow & \Omega \Sigma^2 A \end{array}$$

Since $\sigma_{\Sigma A} : \Sigma A \to \Omega \Sigma^2 A$ and $\iota^{\vee} : \Sigma A \vee \Sigma A \to \Sigma A \times \Sigma A$ are 2*a*-connected, all three vertical maps will be 2*a*-connected, and so γ will be too.

Tom Jack, Axel Ljungström

Towards computing $\pi_6 \mathbb{S}^4$ in HoT1

Recall the Brunerie element $[\iota_2, \iota_2] : \mathbb{S}^3 \to_{\bullet} \mathbb{S}^2$ (writing $\iota_2 :\equiv id_{\mathbb{S}^2}$.) We will apply the main lemma to this map.

Lemma (Brunerie 2016)

We have a 4-connected map $cof_{[\iota_2,\iota_2]} \rightarrow \Omega \mathbb{S}^3$. In particular:

$$\pi_{3} \operatorname{cof}_{[\iota_{2},\iota_{2}]} \cong \pi_{4} \mathbb{S}^{3}$$
$$\pi_{4} \operatorname{cof}_{[\iota_{2},\iota_{2}]} \cong \pi_{5} \mathbb{S}^{3}$$

Construction

Applying the main lemma with pinch_[ι_2, ι_2] : cof_[ι_2, ι_2] $\rightarrow \mathbb{S}^4$, we get a 4-connected map $\gamma : cof_{[\iota_2, \iota_2]} \rightarrow fib_{pinch_{[\iota_2, \iota_2]}}$. This gives an exact sequence:

$$\begin{aligned} & \pi_5 \mathrm{cof}_{[\iota_2,\iota_2]} \to & \pi_5 \mathbb{S}^4 \\ \to & \pi_4 \mathrm{cof}_{[\iota_2,[\iota_2,\iota_2]]} \to & \pi_4 \mathrm{cof}_{[\iota_2,\iota_2]} \to & \pi_4 \mathbb{S}^4 \\ \to & \pi_3 \mathrm{cof}_{[\iota_2,[\iota_2,\iota_2]]} \to & \pi_3 \mathrm{cof}_{[\iota_2,\iota_2]} \to & 1 \end{aligned}$$

Construction

Applying the main lemma with pinch_[ι_2, ι_2] : cof_[ι_2, ι_2] $\rightarrow \mathbb{S}^4$, we get a 4-connected map $\gamma : cof_{[\iota_2, \iota_2]} \rightarrow fib_{pinch_{[\iota_2, \iota_2]}}$. This gives an exact sequence:

$$\begin{array}{rcl} & \pi_5 \mathrm{cof}_{[\iota_2,\iota_2]} & \to & \pi_5 \mathbb{S}^4 \\ \to & \pi_4 \mathrm{cof}_{[\iota_2,[\iota_2,\iota_2]]} & \to & \pi_5 \mathbb{S}^3 & \to & \pi_4 \mathbb{S}^4 \\ \to & \pi_3 \mathrm{cof}_{[\iota_2,[\iota_2,\iota_2]]} & \to & \pi_4 \mathbb{S}^3 & \to & 1 \end{array}$$

16 / 18

Construction

Applying the main lemma with pinch_[ι_2, ι_2] : cof_[ι_2, ι_2] $\rightarrow \mathbb{S}^4$, we get a 4-connected map $\gamma : cof_{[\iota_2, \iota_2]} \rightarrow fib_{pinch_{[\iota_2, \iota_2]}}$. This gives an exact sequence:

$$\begin{array}{rcl} & \pi_5 \mathrm{cof}_{[\iota_2,\iota_2]} & \to & \pi_5 \mathbb{S}^4 \\ \to & \pi_4 \mathrm{cof}_{[\iota_2,[\iota_2,\iota_2]]} & \to & \pi_5 \mathbb{S}^3 & \to & \pi_4 \mathbb{S}^4 \\ \to & \pi_3 \mathrm{cof}_{[\iota_2,[\iota_2,\iota_2]]} & \to & \pi_4 \mathbb{S}^3 & \to & 1 \end{array}$$

Lemma

Now, using results by Brunerie and (very recently!) by Ljungström:

 $[\iota_2, [\iota_2, \iota_2]] = [\iota_2, \pm 2\eta] = \pm 2[\iota_2, \eta]$

which must be trivial since $\pi_4 \mathbb{S}^2 \cong \mathbb{Z}/2\mathbb{Z}$. Therefore $cof_{[\iota_2, [\iota_2, \iota_2]]} \simeq \mathbb{S}^2 \vee \mathbb{S}^5$ (at least merely...)

Construction

Applying the main lemma with pinch_[ι_2, ι_2] : cof_[ι_2, ι_2] $\rightarrow \mathbb{S}^4$, we get a 4-connected map $\gamma : cof_{[\iota_2, \iota_2]} \rightarrow fib_{pinch_{[\iota_2, \iota_2]}}$. This gives an exact sequence:

$$\begin{array}{rcl} & \pi_5 \mathrm{cof}_{[\iota_2,\iota_2]} & \to & \pi_5 \mathbb{S}^4 \\ \to & \pi_4 \mathbb{S}^2 & \to & \pi_5 \mathbb{S}^3 & \to & \pi_4 \mathbb{S}^4 \\ \to & \pi_3 \mathbb{S}^2 & \to & \pi_4 \mathbb{S}^3 & \to & 1 \end{array}$$

Lemma

Now, using results by Brunerie and (very recently!) by Ljungström:

 $[\iota_2, [\iota_2, \iota_2]] = [\iota_2, \pm 2\eta] = \pm 2[\iota_2, \eta]$

which must be trivial since $\pi_4 \mathbb{S}^2 \cong \mathbb{Z}/2\mathbb{Z}$. Therefore $cof_{[\iota_2, [\iota_2, \iota_2]]} \simeq \mathbb{S}^2 \vee \mathbb{S}^5$ (at least merely...)

Proof of main theorem.

We now have this EHP-like exact sequence:

$$\begin{array}{cccc} & & & & & & & & \\ & \rightarrow & \pi_4 \mathbb{S}^2 & \rightarrow & \pi_5 \mathbb{S}^3 & \rightarrow & \pi_4 \mathbb{S}^4 \\ & \rightarrow & & \pi_3 \mathbb{S}^2 & \rightarrow & \pi_4 \mathbb{S}^3 & \rightarrow & 1 \end{array}$$

17 / 18

Proof of main theorem.

We now have this EHP-like exact sequence:

 $\begin{array}{cccc} & & & & & & \\ \pi_5 \mathbb{S}^4 \\ \rightarrow & \pi_4 \mathbb{S}^2 & \rightarrow & \pi_5 \mathbb{S}^3 & \rightarrow & \pi_4 \mathbb{S}^4 \\ \rightarrow & \pi_3 \mathbb{S}^2 & \stackrel{\%2}{\twoheadrightarrow} & \pi_4 \mathbb{S}^3 & \rightarrow & 1 \end{array}$

Proof of main theorem.

We now have this EHP-like exact sequence:

 $\begin{array}{cccc} & & & & & & \\ \pi_5 \mathbb{S}^4 \\ \rightarrow & \pi_4 \mathbb{S}^2 & \rightarrow & \pi_5 \mathbb{S}^3 & \rightarrow & \pi_4 \mathbb{S}^4 \\ \stackrel{\times 2}{\hookrightarrow} & \pi_3 \mathbb{S}^2 & \stackrel{\% 2}{\twoheadrightarrow} & \pi_4 \mathbb{S}^3 & \rightarrow & 1 \end{array}$

Proof of main theorem.

We now have this EHP-like exact sequence:

 $\begin{array}{ccccc} & & & & & & & \\ \rightarrow & \pi_4 \mathbb{S}^2 & \rightarrow & \pi_5 \mathbb{S}^3 & \stackrel{0}{\rightarrow} & \pi_4 \mathbb{S}^4 \\ \stackrel{\times 2}{\rightarrow} & \pi_3 \mathbb{S}^2 & \stackrel{\% 2}{\rightarrow} & \pi_4 \mathbb{S}^3 & \rightarrow & 1 \end{array}$

Proof of main theorem.

We now have this EHP-like exact sequence:

 $\begin{array}{cccc} & & & & & & \\ & \rightarrow & \pi_4 \mathbb{S}^2 & \twoheadrightarrow & \pi_5 \mathbb{S}^3 & \stackrel{0}{\rightarrow} & \pi_4 \mathbb{S}^4 \\ & \stackrel{\times 2}{\rightarrow} & \pi_3 \mathbb{S}^2 & \stackrel{\% 2}{\twoheadrightarrow} & \pi_4 \mathbb{S}^3 & \rightarrow & 1 \end{array}$

Proof of main theorem.

We now have this EHP-like exact sequence:

 $\begin{array}{cccc} & & & & & & \\ & & & \\ \xrightarrow{\partial} & & & \pi_4 \mathbb{S}^2 & \twoheadrightarrow & \pi_5 \mathbb{S}^3 & \xrightarrow{0} & & & \\ & & \times^2 & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & \\ & & & &$

Proof of main theorem.

We now have this EHP-like exact sequence:

- 04

Since both $\pi_5 \mathbb{S}^4$ and $\pi_4 \mathbb{S}^2$ are isomorphic to $\mathbb{Z}/2\mathbb{Z}$, we are done: we have some $\partial : \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$, and we define $n :\equiv \partial(1) \in \{1,2\}$. Then since $\pi_5 \mathbb{S}^3 \cong (\mathbb{Z}/2\mathbb{Z})/\text{Im}(\partial)$, we have $\pi_5 \mathbb{S}^3 \cong \mathbb{Z}/n\mathbb{Z}$.

Future work?

- Prove *n* = 2...
- Mechanise this in Cubical Agda!
- Other applications of Gray's corollary?

Future work?

- Prove *n* = 2...
- Mechanise this in Cubical Agda!
- Other applications of Gray's corollary?
- Higher dimensions: higher stages of the relative James filtration? See Yang, Mukai, and Wu 2024, Zhu and Jin 2024, Zhu 2024.
- Higher order: analogues for higher order Hopf maps? See Devalapurkar and Haine 2021

Future work?

- Prove *n* = 2...
- Mechanise this in Cubical Agda!
- Other applications of Gray's corollary?
- Higher dimensions: higher stages of the relative James filtration? See Yang, Mukai, and Wu 2024, Zhu and Jin 2024, Zhu 2024.
- Higher order: analogues for higher order Hopf maps? See Devalapurkar and Haine 2021
- What's going on here?

$$0 \cong \pi_4^{\mathsf{S}} \cong \pi_5^{\mathsf{S}} \cong \pi_{12}^{\mathsf{S}}$$
$$\cong \pi_{19} \mathbb{S}^7 \cong \pi_{20} \mathbb{S}^8 \cong \pi_{21} \mathbb{S}^9$$

S ⁵	S ⁶	\$ ⁷	S ⁸	S ⁹	S ¹⁰
19	1.1	1.1	1.1	1.1	1.0
00	00	60	60	60	00
2	2	2	2	2	2
2	2	2	2	2	2
24	24	24	24	24	24
2		1.0	1.1	1.1	1
2	~	1.0			
-	· · ·				
2	2	-	2	2	2
2 30	2 60	2 120	<u>2</u> ∞·120	2 240	2 240
2 30 2	2 60 24-2	2 120 2 ³	2 ∞-120 2 ⁴	2 240 2 ³	2 240 2 ²
2 30 2 2 ³	2 60 24-2 2 ³	120 2 ³ 2 ⁴	2 ∞·120 2 ⁴ 2 ⁵	2 240 2 ³ 2 ⁴	2 240 2 ² ∞-2 ³
2 30 2 2 ³ 72-2	2 60 24·2 2 ³ 72·2	2 120 2 ³ 2 ⁴ 24·2	2 ∞·120 2 ⁴ 2 ⁵ 74927	2 240 2 ³ 2 ⁴ 24·2	2 240 2 ² ∞-2 ³ 12-2
2 30 2 2 ³ 72·2 504·2 ²	2 60 24-2 2 ³ 72-2 504-4	2 120 2 ³ 2 ⁴ 24·2 504·2	2 00-120 2 ⁴ 2 ⁵ 747 27 504-2	2 240 2 ³ 2 ⁴ 24·2 504·2	2 240 2 ² 2 ³ 12:2 504
2 30 2 2 ³ 72·2 504·2 ² 2 ³	2 60 24·2 2 ³ 72·2 504·4 240	2 120 2 ³ 2 ⁴ 24 ² 504 ²	2 00-120 2 ⁴ 2 ⁵ 7472 504-2	2 240 2 ³ 2 ⁴ 24 ² 504 ²	2 240 2 ² 0·2 ³ 12·2 504 12

Figure: Wikipedia

Questions?

References I

Baker, R. (2024). Eckmann-Hilton and the Hopf Fibration. URL: https://hott-

uf.github.io/2024/abstracts/HoTTUF_2024_paper_24.pdf.

- Brunerie, G. (2016). "On the homotopy groups of spheres in homotopy type theory". PhD thesis. Université Nice Sophia Antipolis. URL: http://arxiv.org/abs/1606.05916.
- Buchholtz, U. and E. Rijke (2018). "The Cayley-Dickson Construction in Homotopy Type Theory". In: *Higher Structures* 2.1, pp. 30–41. DOI: 10.21136/HS.2018.02.

Cagne, P. et al. (2024). "On symmetries of spheres in univalent foundations". In: Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '24. Tallinn, Estonia: Association for Computing Machinery. ISBN: 9798400706608. DOI: 10.1145/3661814.3662115. URL: https://doi.org/10.1145/3661814.3662115.

References II

Devalapurkar, S. and P. Haine (2021). "On the James and Hilton-Milnor splittings, and the metastable EHP sequence". In: Documenta Mathematica 26, pp. 1423–1464. ISSN: 1431-0643. DOI: 10.4171/dm/845. URL: http://dx.doi.org/10.4171/dm/845. Gray, B. (Apr. 1973). "On the Homotopy Groups of Mapping Cones". In: Proceedings of the London Mathematical Society s3-26.3, pp. 497-520. ISSN: 0024-6115. DOI: 10.1112/plms/s3-26.3.497. eprint: https://academic.oup.com/plms/article-pdf/s3-26/3/497/4240226/s3-26-3-497.pdf. URL: https://doi.org/10.1112/plms/s3-26.3.497. Hatcher, A. (2002). Algebraic Topology. Cambridge University Press. ISBN: 9780521795401. URL: https://pi.math.cornell.edu/~hatcher/AT/AT.pdf. Lang, G. (1973). "The evaluation map and EHP sequences". In: Pacific Journal of Mathematics 44.1, pp. 201–210.

References III

- Licata, D. R. and G. Brunerie (2013). "π_n(Sⁿ) in Homotopy Type Theory". In: *Certified Programs and Proofs*. Ed. by G. Gonthier and M. Norrish. Cham: Springer International Publishing, pp. 1–16. ISBN: 978-3-319-03545-1.
- 📕 Licata, D. R. and M. Shulman (2013). "Calculating the Fundamental Group of the Circle in Homotopy Type Theory". In: Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '13. New Orleans, LA, USA: IEEE Computer Society, pp. 223–232. ISBN: 978-0-7695-5020-6. DOI: 10.1109/LICS.2013.28. Ljungström, A. and A. Mörtberg (2023). "Formalizing $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$ and Computing a Brunerie Number in Cubical Agda". In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1-13. DOI: 10.1109/LICS56636.2023.10175833. The Univalent Foundations Program (2013). Homotopy Type Theory:

Univalent Foundations of Mathematics. Institute for Advanced Study: Self-published. URL: https://homotopytypetheory.org/book/.

References IV

Whitehead, G. W. (1978). *Elements of Homotopy Theory*.

- (1953). "On the Freudenthal Theorems". In: Annals of Mathematics 57.2, pp. 209–228. ISSN: 0003486X, 19398980. URL:
- http://www.jstor.org/stable/1969855 (visited on 01/08/2025). Yang, J., J. Mukai, and J. Wu (2024). On the Homotopy Groups of
- Yang, J., J. Mukai, and J. Wu (2024). On the Homotopy Groups of the Suspended Quaternionic Projective Plane and Applications. arXiv: 2301.06776 [math.AT]. URL:

https://arxiv.org/abs/2301.06776.

Zhu, Z. (2024). The unstable homotopy groups of 2-cell complexes. arXiv: 2410.20416 [math.AT]. URL: https://arxiv.org/abs/2410.20416.

18 / 18

References V

Zhu, Z. and T. Jin (2024). "The relative James construction and its application to homotopy groups". In: *Topology and its Applications* 356, p. 109043. ISSN: 0166-8641. DOI: https://doi.org/10.1016/j.topol.2024.109043. URL: https://www.sciencedirect.com/science/article/pii/ S0166864124002281.