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Motivation

– We work in a constructive meta theory
– Weak meta theory to make the results more generally applicable
– Allows internalizing model construction into arbitrary models of ETT

– We want presheaf models for HoTT (over an internal category in cSet)

– Justification of Synthetic Approaches
– Synthetic Algebraic Geometry (Cherubini, Coquand, and Hutzler, 2023)
– Synthetic Stone Duality (Cherubini, Coquand, Geerligs, and Moeneclaey, 2024)
– . . .
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Why do we need an Internal Site?
Validity of Duality Axioms

– k-Algf p → cSet ∼= ( op × k-Algf p)→ Set where is some cube category
– The generic ring is R(A) := k-Algf p(k[X ],A) ∼= |A|
– The duality axiom says that for each presentation1 (p1, . . . , pm) : R[X1, . . . ,Xn]

m

R[X1,...,Xn]
(p1,...,pm) R(s : Rn)×∀i .pi (s)'0

R[X1,...,Xn]
(p1,...,pm)

ev

η
o

strict

– Since ' in R is extensional equality, R(s : Rn)×∀i .pi (s)'0 has no non-trivial paths.
– Strict axiom holds in general =⇒ holds for HITs iff quotients are equivalent

1given in a strict form, e.g, as a list of coefficients or trees3/13
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Internal Sites

– Resolve mismatch by passing to internal site of cubical (0-truncated) k-algebras
k-Alg : op → Cat “The type of 0-truncated k-algebras in Psh( )”

– This category is fully defined in the language of HoTT
– We need a strict category for what follows, but path composition is not strict!

– Use relational morphisms, i.e., phrase conditions for h : A→ B as
(x , y , z : A)→ x + y 'A z → hx + hy 'B hz

– For arbitrary C analogous construction: consider image ofょ: C ↪→ Psh(C) and
write natural transformations relationally uf ' v → (αIu)f ' αJ(v)

4/13
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Internal Sites

– Category of internal presheaves on C : op → Cat is equivalent to Psh(
∫

C)
– In internal language of Psh( ): just an ordinary presheaf category

Psh( ) Psh(
∫

C)
π∗

π∗

a

– The category Psh(
∫

C) is a setting for the cubical model construction
– tiny interval (π∗I)(I,X) = I(I)
– cofibration classifier (π∗Φ)(I,X) = Φ(I)

– We obtain a model of HoTT with HITs

5/13



Introduction Motivation Models on Internal Categories Conclusion

Working with Strictified Internal Sites

– Some key objects can be defined directly, e.g., R(A) := |A|
– These will in general only be fibrant levelwise

– Other objects are more problematic, e.g., quotients of and free algebras over R
– These can be defined levelwise as an HIT
– Are only presheaves up to homotopy

A A[X ]

B B[X ]

C C [X ]

g

f g

g

f g

f f
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Strictification Modality (Coquand, Ruch, and Sattler, 2021)
– Consider external categories, but these results can be generalized to our setting

– Introduce modality E s.t. A weak−−−→ B correspond to A strict−−−→ EB

Lemma (Levelwise Principle)
For an E-modal type A, we have ElPsh(

∫
C)(Γ, ‖A‖)←→ ElPsh( )(C0.Γ, ‖A‖).

– The construction can be factored over a notion of weak presheaf
– Allows working with weak objects needed for SAG and SSD settings

Pshw (
∫
Γ) Psh(

∫
Γ)

RΓ

UΓ

E“>” (Nat in Γ: Psh(C))
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Summary until now

– To obtain the duality axioms, we need to pass to internal sites
– To deal with the resulting coherence issues, we need the modality E

– For axioms of synthetic stone duality, we also need dependent choice
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Sattler’s Model of ∞-Groupoids (2023)
– Let := PosFin, 6=∅ and � : Psh( )

i∗−→ Psh(∆+)
i∗−→ Psh( )

– Defining property ElPsh( )(Γ,�A) ∼= ElPsh(∆+)(i∗Γ, i∗A)

– We take the submodel of modal types for �
– Associated model structure for this model is Quillen equivalent to the

(constructive) Kan model structure on Psh(∆)

Lemma (Pointwise Principle)
For �-modal types, there is a logical equivalence ElPsh( )(Γ, ‖A‖)←→ ElSet(|Γ|, |A|).

– As a consequence, dependent choice holds in the model
– The presheaf construction should preserve this property
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Cubical Presheaves over Internal Categories
Putting it all Together

Lemma
The pointwise lifted � modality preserves fibrant types in the sense of Psh(

∫
C).

To combine the two modalites and obtain both principles we need the following.

Lemma
The modality E preserves �-modal types.

We cannot yet make the conclusion below. The underlying family of types of an
internal presheaf might not be fibrant in the sense of Psh( ).

ElPsh(
∫
C)(Γ, ‖A‖)

E←−−−→ ElPsh( )(C0.Γ, ‖A‖)
�←−−−→ ElSet(|C0|.|Γ|, |A|)
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Cubical Presheaves over Internal Categories
Fibrant Categories

Issue A ∈ TyPsh(
∫
C)(Γ) fibrant 6=⇒ associated A ∈ TyPsh( )(C0.Γ,A) fibrant

Definition
A cubical category C : op → Cat is fibrant if C1 → C0 × C0 is a fibration.

– Equivalently, C1 : C0 × C0 → U family of fibrant types
– Given a path x : x0 'C0 x1 we can built a line f : (i : I)→ C1(x0, xi) with f0 = idx0

Lemma
Let C : op → Cat be a fibrant category.
If A ∈ TyPsh(

∫
C)(Γ) fibrant then the associated A ∈ TyPsh( )(C0.Γ,A) is fibrant.
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Choice Axioms for Presheaf Models

Theorem
For a fibrant cubical category C : op → Cat, the operation E ◦� is a lex modality on
Psh(

∫
C), and the submodel of modal types is

1. a model of HoTT (with HITs),
2. with a logical equivalence ElPsh(

∫
C)(Γ, ‖A‖)↔ ElSet(|C0|.|Γ|, |A|) natural in Γ.

– General tool for constructing presheaves models
– All our categories of interest satisfy the fibrancy condition
– The pointwise principle allows us to conclude dependent choice for SSD
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Conclusion and Future Work

– Finish specific applications (e.g. SAG, SSD, . . .)

– Compare cubical with other models of higher presheaves

– Formalize existing construction
– large parts can be done in internal language of Psh( )
– especially the technical verification of axioms for the applications
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Dependent Choice Axiom from Pointwise Principle

– ElPsh(
∫
C)(Γ, ‖A‖)↔ ElSet(|C0|.|Γ|, |A|) implies dependent choice

ElPsh(
∫
Γ)(Γ, ‖A0‖) −→ ElSet(|C0|.|Γ|, |A0|)

ElPsh(
∫
Γ)(Γ,Πn : N,an : An‖Fib(fn, an)‖) −→ ElSet(|C0|.|Γ|,Πn:N,an:|An|Σan+1:|An+1||fnan+1 ' an|)

– Then we can argue using induction in Set and conclude

ElPsh(
∫
Γ)(Γ, ‖Σu : ΠNAΠi : Nfiui+1 ' ui‖)←− ElSet(|C0|.|Γ|,Σu : ΠN|A|Πi : N|fiui+1 ' ui |)

1/5
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Cubical Presheaves over Internal Categories

Setting op : C→ Cat, a strict (closed) category in Psh( )

– The category Psh(
∫

C) has
– tiny interval (π∗I)(I,X) = I(I)
– universal cofibration π∗> : π∗1→ π∗Φ

– Cubical model construction applies

Problem
– If C = C0 the model is not the slice model!
– This is not the same issue as in CRS since it occurs for C0
– There are non-trivial paths in the type of objects

Psh( ) ↓ C0

Psh(
∫

C0)

Psh(
∫

C)

Psh( )

'

i∗i∗

π∗π∗

a

a
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Cubical Presheaves over Internal Categories
Notions of Fibrancy

– Comparison of fibrancy in case of discrete category
– Consider the family (− = ?) over B(Z/2Z)

– Fibrant in Psh(
∫

B(Z/2Z)) constructed with π∗I, π∗Φ
– Modal for �-modality (lifted in the obvious way)
– Inhabited on points since ? = ?
– not inhabited, ElPsh(∫ B(Z/2Z))(1, (− = ?)) = ∅

– This type is not fibrant in the slice

B(Z/2Z)

?

π

3/5



Bonus Slides References

Fibrancy

– An internal (dependent) presheaf is fibrant if A0 → Γ0 is a fibrantion, and the
restriction action (the square on the left) is a morphism of fibrations

C0.Γ0.A0 C1.Γ1.A1 C0.Γ0.A0

Mor

C0.Γ0 C1.Γ1 C0.Γ0

y

– In the model we obtain from the construction, these will not be fibrations in the
sense of Psh( )

– Instead, we only consider those lifting problems where the path is constant on C0
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