On left adjoints preserving colimits in HoTT

Perry Hart and Favonia

University of Minnesota, Twin Cities

HoTT/UF 2025

◆□ → < □ → < Ξ → < Ξ → Ξ < つへ ? 1/13</p>

- 1. See whether left adjoints preserve colimits in wild categories.
- 2. Find a reasonably nice sufficient condition for it to hold.
- 3. Apply this condition to $\Sigma \dashv \Omega$.

Use a higher version of *Cavallo's trick* to enable mechanization in Book HoTT.

• Originally, show that pointed colimits preserve acyclic types.

• Construct colimits in various wild categories of higher groups by describing them as reflective subcategories.

• Simplify the construction of stable homotopy as a homology theory.

The classical proof

Consider a diagram $F : \mathcal{J} \to \mathcal{C}$ with a colimit $T := \operatorname{colim}_{\mathcal{J}}(F)$. Short and sweet:

 $hom_{\mathcal{D}}(L(T), Y)$ $\cong hom_{\mathcal{C}}(T, R(Y))$ $\cong lim_{i}(hom_{\mathcal{C}}(F_{i}, R(Y)))$ $\cong lim_{i}(hom_{\mathcal{D}}(L(F_{i}), Y))$

This is *almost* the universal property of the colimit.

Need to ensure **the composite equals the canonical function**. Not guaranteed to hold for *wild categories*. A *wild category* is a pre-category except with untruncated hom-types.

Suppose $L : C \to D$ and $R : D \to C$ are functors of wild categories. Suppose $L \dashv R$:

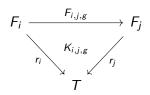
• a family of hom-equivalences

 $\alpha : \prod_{X: \operatorname{Ob}(\mathcal{D})} \prod_{A: \operatorname{Ob}(\mathcal{C})} \hom_{\mathcal{D}}(LA, X) \xrightarrow{\simeq} \hom_{\mathcal{C}}(A, RX)$

proofs V₁ and V₂ of the naturality of α in X and A, respectively.

Let Γ be a graph and a diagram $F : \Gamma \to C$.

Consider a cocone



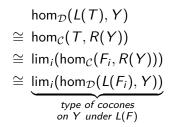
under F.

Suppose the cocone (T, r, K) is colimiting.

< □ ▶ < 큔 ▶ < 볼 ▶ < 볼 ▶ 볼 ∽ 의 < ♡ < 6/13

Replaying the standard proof

We still have the chain of equivalences



Problem: This composite need not be post-composition.¹

- Legs of the cocones are still equal.
- The triangle homotopies may be different.

¹See the abstract for a counterexample based on the *H*-space S^1 .

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへの

Our definition of *adjunction* is fine for 1-categories but not coherent enough for wild categories.

Nothing about the interaction between

- the naturality sqaures of the adjunction
- the equational axioms of the categories and functors.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

8/13

We need a condition on this interaction to make *composite* = *post-comp*.

We say that *L* is 2-*coherent* if the diagram

$$\begin{array}{c} (\alpha(h_1) \circ h_2) \circ h_3 \xrightarrow{\operatorname{assoc}(\alpha(h_1),h_2,h_3)} \alpha(h_1) \circ (h_2 \circ h_3) \\ \\ ap_{-\circ h_3}(V_2(h_2,h_1)) \\ \alpha(h_1 \circ L(h_2)) \circ h_3 \\ V_2(h_3,h_1 \circ L(h_2)) \\ V_2(h_3,h_1 \circ L(h_2)) \\ \alpha((h_1 \circ L(h_2)) \circ L(h_3)) \\ \\ \alpha((h_1 \circ L(h_2)) \circ L(h_3)) \\ ap_{\alpha}(\operatorname{assoc}(h_1,L(h_2),L(h_3))) \\ \end{array}$$

commutes for all suitable morphisms h_1 , h_2 , and h_3 .

Theorem

If L is 2-coherent, then (L(T), L(r), L(K)) is colimiting in \mathcal{D} .

Goal: Show that $\Sigma : \mathcal{U}^* \to \mathcal{U}^*$ is a 2-coherent left adjoint to Ω .

The SIP turns 2-coherence into a *(pointed)* homotopy between pointed homotopies:

Definition

Let f_1 and f_2 be pointed maps and let $(H_1, \kappa_1), (H_2, \kappa_2) : f_1 \sim_* f_2$.

- A homotopy between (H_1, κ_1) and (H_2, κ_2) consists of
 - a homotopy $\mu: H_1 \sim H_2$
 - a path M_{μ} : $\kappa_1 =_{\mu} \kappa_2$ over μ .

In the case of Σ ,

- μ: messy but doable
- M_{μ} : real nasty.

But we're landing in a loop space, which is strongly homogeneous.²

Lemma (yaCt) Let $f_1, f_2 : X_1 \rightarrow_* X_2$ with X_2 strongly homogeneous. Let $(H_1, \kappa_1), (H_2, \kappa_2) : f_1 \sim_* f_2$. If $H_1 \sim H_2$, then (H_1, κ_1) and (H_2, κ_2) are homotopic.

Result: We ignore M_{μ} and are done!

11/13

 $^{^{2}}$ A pointed type is *strongly homogeneous* if it's homogeneous such that the automorphism is the identity for the basepoint.

• A trick for showing that $\bullet \land -: \mathcal{U}^* \to \mathcal{U}^*$ is 2-coherent?

• Show that all modalities on \mathcal{U} satsisfy 2-coherence (not hard).

• Show that all reflective subuniverses of \mathcal{U} satisfy 2-coherence.

"For any reflective subuniverse, we can prove all the familiar facts about reflective subcategories from category theory, in the usual way" (*The HoTT Book*, p. 248).

This seems non-obvious for preservation of colimits.

Takeaway: Left adjoints preserve colimits under a reasonable condition, which Σ satisfies.

Agda code: https://github.com/PHart3/colimits-agda

Thanks!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのの⊙

13/13