
The Yoneda embedding in simplicial type theory

Daniel Gratzer Jonathan Weinberger Ulrik Buchholtz
April 8, 2025

Aarhus University
Chapman University
University of Nottingham

0



What are we trying to do?

Two things which are neat:1

1. (Homotopical) dependent type theory,
2. (Homotopical) category theory.

Our goal
Let’s make these two independently neat things even better by combining them.

More specifically:

Our goal (revised)
We want a HoTT-variant tuned to prove facts about (∞, 1)-categories.

1Given the audience, I will not motivate (1). After Bastiaan’s talk, I will also not motivate (2).
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The complication: categories are not groupoids

The fundamental challenge: variance.

• Cat (∞ or not) is not locally Cartesian closed.
• Consequently, not every operation in HoTT can be interpreted by Cat.
• Also new operations (e.g., −op) which have no clear counterpart.

Two solutions:

1. Change type theory a lot but work with basically Cat
2. Change type theory a little but work with something more complex than Cat

See e.g., [War13; Nuy15; Kav19; KS23; ANW23; Nor18; Nuy20; NA24] for (1).
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The solution: moving the goal posts

Big Idea
Following [RS17]:

• Embed Cat fully-faithfully into the (∞-)topos PSh(∆).
• Use ordinary HoTT + axioms to reason about the image of this embedding

(isolated by 2 propositions!).
• Throw in a handful of modalities for good measure

(Axioms are closely related those of Synthetic Algebraic Geometry [CCH23])
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Simplicial Type Theory

Simplicial type theory extends ordinary HoTT to reason about PSh(∆):

• 4 modalities (à la MTT [Gra+20]) including o and ♭,
• ∼8 axioms postulating a synthetic directed interval I and controlling its behavior.

Using I, we define commuting triangles, composable pairs, and isomorphisms:

∆2 =
• •

•
Λ2

1 =
• •

•
E = • •

Not every type is a category, but every category is a type:

homC (c, d) =
∑

f :I→C f 0 = c × f 1 = d

isCategory(C) = isEquiv(C∆2 → CΛ2
1) × isEquiv(C → CE )
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A map of PSh(∆)

Simplicial spaces

Categories

Groupoids

Bool, Nat, ⟨♭ | X ⟩, . . .

I, ∆n, S, . . .

(the interesting stuff)

U , certain
∑

s
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Our contribution

Prior work

• [RS17; Bar22]: limits, colimits, adjunctions, etc. are definable in STT.
• [GWB24]: there is a directed-univalent category S ⊆ U of groupoids.

We put these two together and show many of the foundational results are within reach:

• There is a fully-faithful functor C → PSh(C) = S⟨o|C⟩.
• PSh(C) is (co)complete (in fact, the free cocompletion of C).
• Existence of and formula for pointwise Kan extensions
• Quillen’s theorem A
• . . .
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The big idea

The proofs of many of these results boil down to the same maneuver:

• Directed univalence tells us that χ holds of S.
• χ is checked pointwise in PSh(C), so it holds for all presheaf categories.
• Since C is full subcategory of PSh(C), χ holds for C as well.

The third step is the main technical contribution:

Linchpin construction
Φ = ŷ : ⟨o | C⟩ × C → S which defines a functorial version of hom(−, −).
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From twisted arrows to Φ

A few words about Φ are in order. The most important are “twisted arrow”.

• We realize the total space of Φ as a modality ⟨t | C⟩.
• The modal machinery gives us the required projection functions.
• We add an axiom ensuring ⟨t | −⟩ represents the right functor.

Objects of ⟨t | C⟩ are arrows in C and arrows are “twisted” squares:

c1

c2

c0

c3
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The geometry of Φ

To show that Φ factors through S, we must show that it is covariant:
Theorem
If A :♭ X → U then A factors through S if and only if

∑
x :X A(x) → X is right

orthogonal to {0} → ∆n for all n.

So we need an inverse to

⟨♭ | ⟨t | C⟩∆n⟩ → ⟨♭ | ⟨t | C⟩⟩ ×⟨♭|⟨o|C⟩×C⟩ ⟨♭ | (⟨o | C⟩ × C)∆n⟩

Roughly, this inverse sends:
cn cn+1,

cn cn−1 · · · ,

cn+1 cn+2 · · ·

 =⇒
cn cn−1 · · · c0

cn+1 cn+2 · · · c2n
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Think discretely, act functorially

With y, we can prove a number of useful rectification results which amount to the
following for various values of Ψ:

Theorem
If there is a function (c :♭ C) → Ψ(c) then there is a unique function (c : C) → Ψ(c)

For instance:

• Ψ(c) = “αc : hom(F c , G c) is an isomorphism” (pointwise invertible = invertible)
• Ψ(c) = “Φ(L(c), −) is representable”.

From the last one, we upgrade a “pointwise” adjoint to a full adjunction.
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A potpourri of adjunctions

Let’s read off some adjunctions:

• f ∗ : SD → SC with f : C → D is both left and right adjoint.
• i : S≤n → S is a right adjoint.
• Ω∞ : Sp → S∗ is a right adjoint.
• i : ∆inj → ∆ is a right adjoint.

• Φ(f (−), −) : E → PSh(C) is a right adjoint if E is cocomplete.

There’s usually an obvious guess for the adjoint... but it’s not obviously functorial.

Corollary
If E is cocomplete then isEquiv(y∗ : (PSh(C) →L E ) → (C → E ))
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Kan extensions

The adjoints to f ∗ : SD → SC are given by left/right Kan extension...

Theorem
If E is (co)complete then ED → EC has a (left) right adjoint.

• Proof reduces to the case of PSh(−) where it follows from above.
• One can unravel to recover the usual formula for pointwise Kan extensions.
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Quillen’s theorem A

With Kan extensions to hand, we can prove the following:

Theorem (Quillen)
If f :♭ C → D then the following are equivalent:

• f is right cofinal.
• For all d :♭ D the category C ×D Dd/ is weakly contractible.
• lim−→D ◦f ∗ = lim−→C : D → S.

Why does this matter? In practice, we make C very simple and D is quite complex.
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A little example: cocartesian maps are proper

Theorem
If π :♭ E → B is cocartesian & u :♭ A → B is right cofinal then π∗u : A∗E → E is
right cofinal.

By Theorem A, we need to prove ⃝grpd(A ×B Ee/) ≃ 1. for this we calculate...

14



A little example: continued

⃝grpd(A ×B Ee/)
(π is cocartesian)

≃ ⃝grpd
(
A ×B

(∑
b′:B,f :hom(π(e),b′) (Eb′)I

))
(Reshuffling some Σs and equalities)

≃ ⃝grpd
(∑

(a,f ):Aπ(e)/
(Eu(a))f!e/

)
(Distribute ⃝grpd to each fiber)

≃ ⃝grpd
(∑

(a,f ):Aπ(e)/
⃝grpd((Eu(a))f!e/)

)
(Coslices have initial objects)

≃ ⃝grpd(Aπ(e)/)
(u is cofinal)

≃ 1 15
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Conclusions

With just the Yoneda embedding, quite a lot of category theory is within reach!

• We can develop the theory of presheaf categories
• From this, Kan extensions, cofinality, etc.
• Proofs are (subjectively) not horrible
• https://arxiv.org/abs/2501.13229 (this paper)
• https://arxiv.org/abs/2407.09146 (the S paper)

Stay tuned! Filtered colimits, stable homotopy theory, animation, etc.
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