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What are we trying to do?

Two things which are neat:!

1. (Homotopical) dependent type theory,
2. (Homotopical) category theory.

Our goal

Let's make these two independently neat things even better by combining them.

!Given the audience, | will not motivate (1). After Bastiaan's talk, | will also not motivate (2).



What are we trying to do?

Two things which are neat:!

1. (Homotopical) dependent type theory,
2. (Homotopical) category theory.

Let's make these two independently neat things even better by combining them.

More specifically:

We want a HoT T-variant tuned to prove facts about (oo, 1)-categories.

!Given the audience, | will not motivate (1). After Bastiaan's talk, | will also not motivate (2).



The complication: categories are not groupoids

The fundamental challenge: variance.

e Cat (oo or not) is not locally Cartesian closed.
e Consequently, not every operation in HoTT can be interpreted by Cat.

e Also new operations (e.g., —°P) which have no clear counterpart.
Two solutions:

1. Change type theory a lot but work with basically Cat
2. Change type theory a little but work with something more complex than Cat
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e Cat (oo or not) is not locally Cartesian closed.
e Consequently, not every operation in HoTT can be interpreted by Cat.

e Also new operations (e.g., —°P) which have no clear counterpart.
Two solutions:

1. Change type theory a lot but work with basically Cat
2. Change type theory a little but work with something more complex than Cat

See e.g., [Warl3; Nuyl15; Kavl9; KS23; ANW23; Norl8; Nuy20; NA24]| for (1).



The solution: moving the goal posts

Following [RS17]:

Embed Cat fully-faithfully into the (oco-)topos PSh(A).

Use ordinary HoTT + axioms to reason about the image of this embedding
(isolated by 2 propositions!).

Throw in a handful of modalities for good measure

(Axioms are closely related those of Synthetic Algebraic Geometry [CCH23|)



Simplicial Type Theory

Simplicial type theory extends ordinary HoTT to reason about PSh(A):
e 4 modalities (a la MTT [Gra+20]) including o and b,

e ~8 axioms postulating a synthetic directed interval I and controlling its behavior.

Using I, we define commuting triangles, composable pairs, and isomorphisms:

e — o e — o
A= L Mg = 1 E= o
[ ]

4}

Not every type is a category, but every category is a type:
homc(c,d) => ¢y, cfO=cxfl=d
isCategory(C) = isEquiv(CA2 — CAf) x isEquiv(C — CF)



A map of PSh(A)

Simplicial spaces

Categories

Groupoids

Bool, Nat, (b | X),...

LA"S,...
(the interesting stuff)

U, certain > s



Our contribution

Prior work

e [RS17; Bar22]: limits, colimits, adjunctions, etc. are definable in STT.

o [GWB24]: there is a directed-univalent category S C U of groupoids.
We put these two together and show many of the foundational results are within reach:

e There is a fully-faithful functor C — PSh(C) = S,
PSh(C) is (co)complete (in fact, the free cocompletion of C).

Existence of and formula for pointwise Kan extensions

e Quillen’s theorem A



The big idea

The proofs of many of these results boil down to the same maneuver:

e Directed univalence tells us that x holds of S.
e Y is checked pointwise in PSh(C), so it holds for all presheaf categories.

e Since C is full subcategory of PSh(C), x holds for C as well.

The third step is the main technical contribution:

Linchpin construction
®=y:(o]| C)x C— S which defines a functorial version of hom(—, —).



From twisted arrows to ¢

A few words about ® are in order. The most important are “twisted arrow”.

o We realize the total space of ® as a modality (t| C).
e The modal machinery gives us the required projection functions.

e We add an axiom ensuring (t | —) represents the right functor.

Objects of (t | C) are arrows in C and arrows are “twisted” squares:

Cl < Q

|

C — C3



The geometry of ¢

To show that ® factors through &, we must show that it is covariant:
Theorem

If A, X — U then A factors through S if and only if > ,.x A(x) — X is right
orthogonal to {0} — A" for all n.

So we need an inverse to

Bl ORT) = (1] O Xpicrxcy b | ({0 ] €) x O
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The geometry of ¢

To show that ® factors through &, we must show that it is covariant:
Theorem

If A, X — U then A factors through S if and only if > ,.x A(x) — X is right
orthogonal to {0} — A" for all n.

So we need an inverse to
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= |
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Think discretely, act functorially

With y, we can prove a number of useful rectification results which amount to the
following for various values of W:

Theorem
If there is a function (c 3, C) — W(c) then there is a unique function (c : C) — W(c)

For instance:

e V(c)="ac:hom(Fc,Gc)is an isomorphism” (pointwise invertible = invertible)

e V(c)="®(L(c),—) is representable”.

From the last one, we upgrade a “pointwise” adjoint to a full adjunction.
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A potpourri of adjunctions

Let’s read off some adjunctions:

o f*:SP — SC with f: C — D is both left and right adjoint.
o i:S<, — & is aright adjoint.
e O :Sp — S, is a right adjoint.

e i: AW — Ais a right adjoint.

There's usually an obvious guess for the adjoint... but it's not obviously functorial.
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A potpourri of adjunctions

Let's read off some adjunctions:

o f*:SP — SC with f: C — D is both left and right adjoint.
o i:S<, — & is aright adjoint.
e Q% :Sp — S, is a right adjoint.
e i: AW — Ais a right adjoint.
o O(f(—),—): E— PSh(C) is a right adjoint if E is cocomplete.
There's usually an obvious guess for the adjoint... but it's not obviously functorial.

Corollary
If E is cocomplete then isEquiv(y* : (PSh(C) =L E) — (C — E))

11



Kan extensions

The adjoints to f* : SP — S¢ are given by left/right Kan extension...

Theorem

If E is (co)complete then EP — EC has a (left) right adjoint.

e Proof reduces to the case of PSh(—) where it follows from above.

e One can unravel to recover the usual formula for pointwise Kan extensions.
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Quillen’s theorem A

With Kan extensions to hand, we can prove the following:

Theorem (Quillen)
If f :, C — D then the following are equivalent:

e f is right cofinal.
e Forall d:, D the category C xp Dy, is weakly contractible.
° Ii_m>Dof*:|i_>C:D—>S.

Why does this matter? In practice, we make C very simple and D is quite complex.
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A little example: cocartesian maps are proper

Theorem
If m:, E — B is cocartesian & u :, A — B is right cofinal then 7*u : A*E — E is
right cofinal.

By Theorem A, we need to prove Ogrpd(A X5 E/) = 1. for this we calculate. ..
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A little example: continued

Ogrpd(A XB Ee/)
(7 is cocartesian)

= Ogrpd (A XB (Zb’:BJ:hom(ﬂ'(e),b’) (Eb/)ﬂ))
(Reshuffling some ¥s and equalities)

= Qgrpd (Z(a,f):ATr(e)/ (Eu(a))fge/)
(Distribute Ogypg to each fiber)

= Ogrpd (Z(a,f):A,r(e)/ Ogrpd((Eu(a))ﬁe/))
(Coslices have initial objects)

~ Ogrpd (Aw(e)/)

(u is cofinal)

~1 ] 15
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Conclusions

With just the Yoneda embedding, quite a lot of category theory is within reach!

e We can develop the theory of presheaf categories

From this, Kan extensions, cofinality, etc.

Proofs are (subjectively) not horrible

https://arxiv.org/abs/2501.13229 (this paper)
https://arxiv.org/abs/2407.09146 (the S paper)

Stay tuned! Filtered colimits, stable homotopy theory, animation, etc.
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