# Introducing Displayed Universal Algebra in UniMath

#### Calosci Matteo

Joint work with: G. Amato, M. Maggesi, C. Perini Brogi

15/04/2025 HoTT/UF 2025



UNIVERSITÀ DEGLI STUDI FIRENZE Da un secolo, oltre.



- Formalize a pre-categorical presentation of Universal Algebra;
- Evaluable Constructions.

## Code available at github.com/UniMath/UniMath and at github.com/UniMathUA/UniMath



**Univalent Mathematics** 

What it is and why we choose it

### Martin-Löf Type Theory

Basic inductive types:

$$\prod \sum + \mathbf{0} \mathbf{1} \mathbb{N} =$$

Two kinds of equality: Judgmental and Propositional.

### **Univalence Axiom**

$$A \simeq B \simeq A = B$$

Reasoning up to isomorphism.



- Minimalist implementation of Univalent Mathematics:
  - General inductive definitions are avoided.
- Contains vast collection of formalized results:
  - Ready-made structures as target for applicartions;
  - Categorical notions;
  - Algebraic Theories.



• Multi sorted **signature**;





- Multi sorted **signature**;
- Algebra over a signature:
  - Unit Algebra;

| Algebra over $\sigma$ |                                                 |
|-----------------------|-------------------------------------------------|
| $\sum$ A: sUU         | (sorts $\sigma$ ), $\prod$ nm: names $\sigma$ , |
| A*                    | (arity nm) $\rightarrow$ A (sort nm).           |



Universal Algebra What we have formalized

- Multi sorted signature;
- Algebra over a signature:
  - Unit Algebra;
  - Term Algebra;
  - Free Algebra;

### **Ground Terms**

### We use **lists**, **stack** and **monad**.

An operation symbols **acts** on a stack of sorts by checking that the arity sorts are at the top of the stack and replacing them with the output sort.

**Terms** are those list of operation names (prefix notation) which act on the empty stack by returning the expected output sort.

- Principles for terms are derived.
- This construction can be encoded as an homotopy W-type

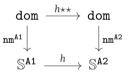


Universal Algebra What we have formalized

- Multi sorted **signature**;
- Algebra over a signature:
  - Unit Algebra;
  - Term Algebra;
  - Free Algebra;
  - Homomorphisms.
- Categorical Structures;

Homomorphisms

An **homomorphism** between A1 and A2 is a sorts-indexed map h: A1 s→ A2 such that



- Identities and composition of homomorphism are homomorphism.
- If the support types are sets then homomorphisms constitute a set.
- We have a **univalent** category of Algebras.



Universal Algebra What we have formalized

- Multi sorted signature;
- Algebra over a signature:
  - Unit Algebra;
  - Term Algebra;
  - Free Algebra;
  - Homomorphisms.
- Categorical Structures;
- Basics for equations;
- Examples;

### **Equations**

An **equation** is just a pair of terms (with variables) of the same sort;

An equational specification is an indexed collection of equations;

An **equational algebra** is an algebra such that any equation (of a given equational specification) holds.

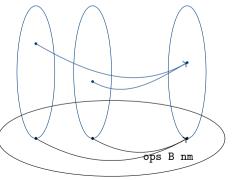


- Multi sorted signature;
- Algebra over a signature:
  - Unit Algebra;
  - Term Algebra;
  - Free Algebra;
  - Homomorphisms.
- Categorical Structures;
- Basics for equations;
- Examples;
- Displayed Algebras.



A displayed algebra over B :algebra  $\sigma$  is the data of

- a family of fiber types indexed over terms of B
- a family of "over operations" functions indexed over any operation name nm and any vector v of terms of sort specified by the arity of nm.





### Total Algebras and Forgetful Morphism Displayed Algebras

The data of a displayed algebra yelds a **total algebra** with the same signature  $\sigma$ 

```
total_alg {B: algebra \sigma} (D: disp_alg B) : algebra \sigma.
```

together with a **forgetful homomorphism** from the total algebra to B.

On the other hand, from any homomorphism h : hom A B of algebras over  $\sigma$ , one gets the **displayed algebra** over B of its fibers:

- The fiber types are the fiber under h of the specific index term;
- The over operations is given by h. They are well typed because h is an homomorphism.



### Morphisms and Displayed Algebras

# Let B be **set-supported**. The **displayed algebra of the fibers** and the **forgetful morphism** of a displayed algebras are inverse to each other:

 $\sum$  (A:algebra  $\sigma$ ), hom A B  $\simeq$  (disp\_alg B)



There are two natural ways to formalize the notion of a subalgebra of B

- as an **embedding** targetting B. That is an homomorphism i: hom A B which is injective on any support;
- as a **subuniverse** of B. That is a collection of support subtypes closed wrt the operations. That is a displayed algebra over B in which **any fiber type is a proposition**

Assuming B to be set-supported, the previous equivalence is specialized to

 $\sum$  (A :algebra  $\sigma$ ), embedding A B  $\simeq$ 

∑ (PA :shsubtype B), issubuniverse B PA.



Future works we aim to develop featuring displayed algebras include

- Cartesian Product and Pullbacks;
- Semidirect product of groups;
- relations with quotients and homomorphism theorems;
- results about composition of displayed constructions.



- Prove theorems!
  - Initial algebra of terms modulo equational congruence;
  - Birkhoff's variety theorem;
  - Generalise the relation between our term algebras and homotopy W types.
- Technicalities: Streamline the interface;
  - Eg: ground term algebra should be a special case of free algebra;
  - readdress heterogeneous vectors.
- More applications and examples of univalent reasoning.



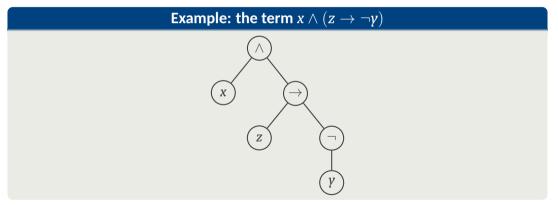
Thank you for listening! Any questions?



### Terms have a tree-like structure

Ground Term Algebra

Let's take a signature  $\sigma$  with a single sort  $\mathbb{S}$ , constants x, y, z, a unary operation  $\neg$ , and two binary operation  $\wedge$  and  $\rightarrow$ .



How to formalize the type of these structures?



 $\sigma$  has a single sort S, and operation names  $x, y, z, \neg, \wedge$  and  $\rightarrow$ .

#### We use lists, stack and monad.

• Polish notation: we express  $x \land (z \to \neg y)$  as

$$\land x \to z \neg y : \texttt{list (opnames } \sigma)$$

• We need a proposition to identify which lists of operation represent a term.



opexec: opnames  $\sigma \rightarrow \text{sortstack } \sigma \rightarrow \text{sortstack } \sigma$ 

**Example:** opexec  $\land$ 

$$\mathbb{S} \mid \mathbb{S} \mid \mathbb{S}$$

• We are able to "catch" and propagate errors:

opexec 
$$\land \mathbb{S} \equiv \mathbf{X}$$
  
opexec  $\land \mathbf{X} \equiv \mathbf{X}$   
opexec  $\land \mathbb{T} \mathbb{T} \equiv \mathbf{X}$ 



oplistexec: oplist 
$$\sigma \twoheadrightarrow \texttt{sortstack}\ \sigma$$

oplistexec 
$$\emptyset :\equiv \emptyset$$
  
oplistexec  $\boxed{nm}$  rest of the list  $:\equiv$  opexec nm (oplistexec rest of the list )



#### List Operation execution: Examples Ground Term Algebra

Let's calculate oplistexec

$$\land x \rightarrow z \neg y$$
.

$$\emptyset \stackrel{\gamma}{\mapsto} \boxed{\mathbb{S}} \stackrel{\neg}{\mapsto} \boxed{\mathbb{S}} \stackrel{z}{\mapsto} \boxed{\mathbb{S}} \boxed{\mathbb{S}} \stackrel{\rightarrow}{\mapsto} \boxed{\mathbb{S}} \stackrel{x}{\mapsto} \boxed{\mathbb{S}} \boxed{\mathbb{S}} \stackrel{\wedge}{\mapsto} \boxed{\mathbb{S}}$$

• We are still able to "catch" errors: oplistexec

$$\land x \rightarrow \neg y$$

$$\emptyset \xrightarrow{\gamma} \mathbb{S} \xrightarrow{\neg} \mathbb{S} \xrightarrow{\rightarrow} \mathbf{X} \xrightarrow{x} \mathbf{X} \xrightarrow{\wedge} \mathbf{X}$$

• A list of operations which does not return an error state does not necessarily represent a valid term.



### **Definition: Term**

A Term of sort S is a list of operations that, when "executed" with oplistexec, returns the stack S.

term 
$$\sigma$$
  $\mathbb{S}$   $\equiv$   $\sum_{(l: \texttt{oplist } \sigma)}$  `oplistexecl=`  $\mathbb{S}$ 

• It is a subtype of oplist  $\sigma$ .



• build\_term (introduction principle): We can introduce a new term from an operation name and a vector of terms with appropriate sorts.



- build\_term (introduction principle): We can introduce a new term from an operation name and a vector of terms with appropriate sorts.
- term\_ind (induction principle): Given a predicate *P* on terms satisfying the opportune inductive hypothesis, we have that *P* holds for any term.



- build\_term (introduction principle): We can introduce a new term from an operation name and a vector of terms with appropriate sorts.
- term\_ind (induction principle): Given a predicate *P* on terms satisfying the opportune inductive hypothesis, we have that *P* holds for any term.
- term\_ind\_step (computation path):

```
term_ind P R (build_term nm v)
= R nm v (h2map (\lambda s t q, term_ind P R t) (h1lift v))
```



### Use cases for induction on terms Ground Term Algebra

- Definition of the ground term algebra;
- depth and fromterm functions:

fromterm: term  $\sigma$  s  $\rightarrow$  A s

• Terms with variables: definition of free algebras;



### Use cases for induction on terms Ground Term Algebra

- Definition of the ground term algebra;
- depth and fromterm functions:

fromterm: term  $\sigma$  s  $\rightarrow$  A s

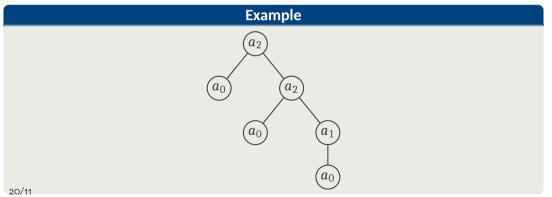
- Terms with variables: definition of free algebras;
- Relation between terms and (homotopy) W-types.

#### CONVERSITA DECLISION PRELATION between terms and W types. Da un secolo. oltre.

Let A:  $\mathcal{U}$  and B: A  $\rightarrow \mathcal{U}$ . W A B is the inductive type with one constructor

sup: 
$$\prod$$
 (x:A), (B(x)  $\rightarrow$  W A B)  $\rightarrow$  W A B.

• It is useful to think of its terms as trees.





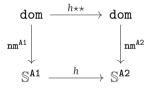
- An equation is just a pair of terms (with variables) of the same sort;
- An equational specification is an indexed collection of equations;
- We have a predicate

holds (a: algebra  $\sigma$ ) (e: equation  $\sigma$  V) : UU :=  $\prod \alpha$ , fromterm (ops a)  $\alpha$  (eqsort e) (lhs e) = fromterm (ops a)  $\alpha$  (eqsort e) (rhs e).

• An **equational algebra** is an algebra such that any equation (of a given equational specification) holds.



• An **homomorphism** between A1 and A2 is a sorts-indexed map h: A1 s→ A2 such that



- Identities and composition of homomorphism are homomorphism.
- If the support types are sets then homomorphisms constitute a set.
- We have a **univalent** category of Algebras.



Consider a signature for the algebra of booleans. We have

- The free term algebra (with variables x and y);
- The boolean algebra built from the type bool of UniMath;

```
Lemma Dummett : \prod i, interp i (disj (impl x y) (impl y x)) = true.
Proof.
```

```
intro i. lazy.
induction (i 0); induction (i 1); apply idpath.
Qed.
```

• The evaluation is done by the computing mechanism of Coq.