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…, or: How not to do synthetic homotopy theory

Univalent foundations has a very different “synthetic” approach to homo-
topy theory in which homotopy types are the basic objects (namely, the
types) rather than being constructed using topological spaces or some other
set-theoretic model. — The HoTT Book (2013)

Can also do homotopy theory the “traditional way” inside HoTT, using
topological spaces, simplicial sets, etc., if it can be made constructive.
This might be useful to access classical objects for which we don’t yet know
of a synthetic construction.

For example: cohomology theories that arise from geometry, like
topologicalK-theory and complex cobordism.
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Why bother? / Why not use e.g. real-cohesion?

Theorem (Adams–Atiyah, ’66)
If Sn−1 has anH-space structure, then n = 1, 2, 4, or 8.
One-page proof using topologicalK-theory (and the Adams operations).

The theorem statement just involves spheres, and is easily expressed in
synthetic homotopy theory. So, we’d ideally be able to replicate the proof in
book HoTT, rather than in an extension designed to talk about geometry.

If we can’t think of any synthetic approach, we might instead try to:
1. build a simplicial set model for the Bott map Z×BU

∼−→ Ω2(Z×BU);
2. take the homotopy type of this map to obtain topologicalK-theory.
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The shape problem
We’d need an internal construction that sends, e.g., a simplicial set like the
simplex boundary ∂∆n to its shape, the “synthetic” sphere Sn−1 : Type.

We don’t know whether this is possible in book (or cubical) HoTT: problem
of coherence data in every dimension. However, in some extensions of HoTT
this is possible: e.g., ones with (semi)simplicial types or∞-categories.

simplicial sets simplicial types

typessh(−)

colim

Let’s assume for the moment that we have some construction sending a
simplicial setX to its shape sh(X).
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The control problem
The plan was to build a map of simplicial sets

Φ : Z×BU → Ω2(Z×BU)

and take its shape to getK-theory. Here, Ω denotes a simplicial model for
the loop space. But the shape of Φ is a map (of types)

sh(Φ) : sh(Z×BU) → sh(Ω2(Z×BU))

whereas to build theK-theory spectrum, we want a map

? : sh(Z×BU) → Ω2(sh(Z×BU))

Question
Does Ω ◦ sh = sh ◦ Ω? More broadly, to what extent does the shape preserve
pushout/pullback squares of simplicial sets?
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Overview of this talk

This talk will propose a few axioms on a subuniverse S of “shapes” together
with an “interval” type I, and use them to address these questions.

1. Overall plan of attack
2. The axioms
3. Simplicial homotopy theory
4. Geometric input

Actually constructing topologicalK-theory is still future work.
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General approach

The whole development will take place in ordinary HoTT augmented by a
few axioms. As usual, by “set” we mean a type that is an h-set.

We make free use of any set-based mathematics that is constructively valid:
notably, the simplex category∆, the (univalent) category sSet := Set∆op

of
simplicial sets, and the constructive Kan–Quillen model structure on sSet
[Henry ’19; Gambino–Sattler–Szumiło ’22]. (Later, we’ll also need a
constructive description of geometric objects like unitary groups.)

By building this model category inside HoTT, we gain the ability to express
the relationship between a simplicial set and its shape: the homotopy type it
represents.
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The pipeline

Sn−1 : Geom

sSet

Set Type

S (shapes)

Sing

I-realization

sh

set-based higher types
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The pipeline

Sn−1 : Geom

SingSn−1 : sSet

(SingSn−1)(I) : Set Type

sh(· · ·) = Sn−1 : S (shapes)

Sing

I-realization

sh

set-based higher types
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Axioms I: Shapes

Axioms on shapes:
1. There is a subuniverse S ⊆ Type of shapes, closed under Σ-types, finite

limits, and finite colimits. We also call shapes discrete (especially sets).
Then S also contains the types 0, 1, 2, S1 (and the rest of the spheres), and
ΩS1 = N; and therefore is closed under sequential colimits, since these can
be built using N-indexed Σ-types and coequalizers.

“Shape” is intended in the sense of cohesion. However, we do not assume
that S is a reflective subuniverse (let alone associated to any modality).

A remark: The propositions in S form a dominance (Σ,⊤) closed under
countable disjunctions, like the open propositions in synthetic topology.
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The shape of a type

We call a function f : X → S withX : Type and S : S a shape map if it is a
reflection ofX into S. Explicitly, this means for each shape T : S, the map

f∗ : (S → T ) → (X → T )

is an equivalence.

We don’t assume S is a reflective subuniverse, so a typeX might not admit a
shape map, but if it does, we say thatX “has a shape” and denote its
(essentially unique) shape map by ηX : X → sh(X).

sh(−) is the “partially defined reflection” into S. Since S is closed under
pushouts and sequential colimits, sh(−) preserves these colimits.
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Example: Simplicial spaces

At the level of objects:

types = simplicial spaces
shapes = constant simplicial spaces, i.e.,∞-groupoids
sh(X) = groupoid reflection (= geometric realization) ofX

Optionally, we could restrict the shapes to countable CW complexes, which
are closed under Σ-types and finite (co)limits. In this case, a type might fail
to have a shape because it is too big.
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Example: Condensed anima
At the level of objects:

types = condensed anima (∞-groupoids)
sets = condensed sets, such as compact Hausdorff spaces

shapes = constant condensed anima (optionally assumed countable)
discrete sets = actual sets (optionally assumed countable)

The shape of the topological circle S1 is the∞-groupoid S1.

This example is definitely not cohesive: a non-locally contractible space like
the Cantor set will not have a reflection into the subcategory of shapes.

This is the motivating example for the whole project, inspired by the proof
of the Brouwer fixed-point theorem in Synthetic Stone Duality [CCGM24].
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Axioms II: The interval type
Axioms on the interval:
2. There is a set I equipped with two points 0, 1 : I, such that ¬(0 =I 1).
2′. The set I is further equipped with a linear ordering≤: I → I → Prop,

with least element 0 and greatest element 1.
3. The set I is shape-contractible, meaning I → 1 is a shape map

(so sh(I) = 1).

Examples: I = ∆1 in simplicial spaces; I = [0, 1] ⊆ R in condensed anima.

Conjecture
We can get rid of axiom 2′ (maybe replacing it by a connection).
Then we’d have to do everything with cubical sets instead of simplicial sets.
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The pipeline

Geom

sSet

Set Type

S (shapes)

Sing

I-realization

sh ✓

set-based higher types
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I-realization
Theorem (Joyal?, Mac Lane–Moerdijk)
There is a unique functor−(I) : sSet → Set preserving colimits and sending∆n to

∆n(I) := { (x1, . . . , xn) | x1 ≤ · · · ≤ xn } ⊆ In.

Furthermore,−(I) preserves finite limits. We callK(I) : Set the I-realization ofK .

In condensed anima (I := [0, 1] ⊆ R), ifK : sSet is levelwise discrete (each
Kn is an ordinary set), thenK(I) is the ordinary geometric realization ofK .

Definition
We define the shape ofK : sSet to be sh(K(I)) : S (provided this exists).

Lemma
sh(∆n) = 1.
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Cofibrancy
In the constructive Kan–Quillen model structure,K : sSet is (Reedy)
cofibrant if for each n : N, the degenerate n-simplices form a decidable
subset ofKn, with complementNnK .

In this case,K can be expressed as the sequential colimit of its skeleta

K = colim
(
∅ = sk−1(K) ↪→ sk0(K) ↪→ sk1(K) ↪→ · · ·

)
and the skeleta are built inductively as pushouts of boundary inclusions:

NnK · ∂∆n skn−1K

NnK ·∆n sknK
⌜

We call this the cellular presentation ofK .
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Shape of a simplicial set
Proposition
IfK : sSet is cofibrant and levelwise discrete then sh(K) exists.

Proof.
Induction on the cellular presentation ofK , using the fact that shape
preserves sequential colimits and pushouts computed in types. By definition,

NnK · ∂∆n(I) (skn−1K)(I)

NnK ·∆n(I) (sknK)(I)
⌜

is a pushout square of sets. But ∂∆n ↪→ ∆n is a mono, and I-realization is
left exact, so the vertical maps are monos and the square is also a pushout in
Type. NnK is discrete because it is decidable subtype ofKn : S.
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Kan fibrations

In the constructive Kan–Quillen model structure, a Kan fibration p : K → L is
a map with chosen solutions to all lifting problems against horn inclusions.

Proposition
If

K ′ K

L′ L

p′
⌟

p

is a pullback square with p (hence also p′) Kan fibrations and all objects cofibrant
and levelwise discrete, then sh sends this square to a pullback in S.
In brief: sh sends homotopy pullbacks to pullbacks of shapes.
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Kan fibrations: proof sketch

This is the main technical difficulty:
▶ define a class of maps called quasifibrations (as in [Dold–Thom ’58]);
▶ reduce to showing the realization of a Kan fibration is a quasifibration;
▶ prove gluing lemmas for quasifibrations, using descent properties of

pushouts and sequential colimits;
▶ thereby reduce to the case of a Kan fibration p : K → ∆n;
▶ use model category arguments to prove that such a fibration is

fiberwise homotopy equivalent to a “constant” oneK ′ ×∆n → ∆n;
▶ deduce that every fiber of p(I) : K(I) → ∆n(I) is I-homotopy

equivalent toK(I) itself, making p(I) a quasifibration.
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Summary of simplicial homotopy theory

▶ IfK : sSet is cofibrant (degeneracy is decidable) and levelwise discrete
(eachKn is in S) then we can form its shape sh(K) := sh(K(I)) : S.

▶ Shape sends pullbacks of Kan fibrations to pullbacks in S.

Using these facts, we can show that ifK is cofibrant, levelwise discrete and a
Kan complex, then

sh(ΩK) = Ω sh(K).
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The pipeline

Geom

sSet

Set Type

S (shapes)

Sing

I-realization ✓

sh ✓

set-based higher types
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Geometric input
How to turn a “geometric object” like the (n− 1)-sphere

Sn−1 := { (x1, . . . , xn) | x21 + · · ·+ x2n = 1 }

into such a cofibrant, levelwise discrete Kan complex?

Traditional homotopy answer is to use Sing : Top → sSet:

(SingX)k := Top(|∆k|, X),

|∆k| := { (t1, . . . , tk) ∈ Rk | 0 ≤ t1 ≤ · · · ≤ tk ≤ 1 } ∈ Top.

That’s unlikely to work here because degeneracy will not be decidable
constructively, and the real numbers may not be discrete.
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Semialgebraic maps
Rather than using arbitrary continuous functions, we use only the
semialgebraic ones, those whose graphs are defined by first-order formulas
in the language of a ring, without parameters from R.

(SingSn−1)k :=
{
formulas φ(~t, ~x) in k + n variables defining
the graph of a continuous function |∆k| → Sn−1

}/
∼

where (
φ(~t, ~x) ∼ ψ(~t, ~x)

)
:=

(
R ⊨ ∀~t ~x. φ(~t, ~x) ⇔ ψ(~t, ~x)

)
.

This is a cofibrant, levelwise discrete simplicial set by Tarski’s theorem: the
first-order theory of R (as a ring) is decidable. It has the same homotopy
type as the usual SingSn−1 by a theorem of [Delfs–Knebusch ’85].
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Conclusions

▶ Synthetic homotopy theory is really easier, when we can do it!
▶ But if not, then we can also do traditional homotopy theory, and

connect it to the synthetic theory in a mild extension of HoTT
▶ Building model categories internal to HoTT lets us express the

relationship between objects of the model category and the types they
present, which may clarify constructive set-based homotopy theory.

Reid Barton Geometric homotopy theory via sSet HoTT/UF 2025 24 / 25



Thank you!
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