A note on left adjoints preserving colimits in HoTT

Perry Hart Kuen-Bang Hou (Favonia)

University of Minnesota, Twin Cities

In classical category theory, a well-known fact is that *left adjoints preserve colimits (LAPC)*. We would like to port this theorem to adjunctions between wild categories in HoTT. However, this turns out to be harder than one might hope. We isolate a sufficient condition for the proof to go through. With this condition, combined with an extension of a known technique based on homogeneous types, we show that suspension, an example of a left adjoint, preserves colimits (over graphs). Note: the sufficient condition and application to the suspension functor were already mentioned in our prior work [4, Appendix B], but here we place these results in a wider context and explain, for the first time, how we formally prove that suspension preserves colimits.

Classical proofs of LAPC

Consider an adjunction $L \dashv R$ between 1-categories \mathcal{C} and \mathcal{D} . Let \mathcal{J} be a small 1-category. The classical theorem states that L preserves \mathcal{J} -shaped colimits, and it has two well-known proofs. The first requires that \mathcal{C} and \mathcal{D} admit global colimit functors $\operatorname{colim}_{\mathcal{J}} : \mathcal{C}^{\mathcal{J}} \to \mathcal{C}$ and $\operatorname{colim}_{\mathcal{J}} : \mathcal{D}^{\mathcal{J}} \to \mathcal{D}$ [7, Chapter V.5]. The proof assumes these two colimit functors satisfy some coherence conditions that are automatically true for 1-categories (but *not* for wild ones).

Instead of requiring global colimit functors, the second proof starts with a specific colimit $\operatorname{colim}_{\mathcal{J}}(F)$ of a diagram $F : \mathcal{J} \to \mathcal{C}$ and shows that $L(\operatorname{colim}_{\mathcal{J}}(F))$ is the expected colimit. Similarly to the first proof, it also assumes some coherence conditions that are true for 1-categories, and thus it is expected that we will need further assumptions when working with wild categories. Now, the proof argues that for each $Y \in \mathsf{Ob}(\mathcal{D})$, the following chain of isomorphisms with $C := \operatorname{colim}_{\mathcal{J}}(F)$ equals the canonical post-composition map [8, Theorem 4.5.2]:

$$\hom_{\mathcal{D}}(L(C), Y) \cong \hom_{\mathcal{C}}(C, R(Y)) \cong \lim_{i}(\hom_{\mathcal{C}}(F_i, R(Y))) \cong \lim_{i}(\hom_{\mathcal{D}}(L(F_i), Y))$$
(iso)

This means that the induced cocone on $L(\operatorname{colim}_{\mathcal{J}}(F))$ is indeed colimiting, i.e., L preserves colimits. Besides avoiding global colimit functors, this proof argues mostly in terms of hom-isomorphisms that can be directly supplied by a reasonable definition of adjunctions. This helps us formulate further conditions needed for wild categories. Thus, we will port the second proof to HoTT.

Porting to wild categories in HoTT

Let \mathcal{C} and \mathcal{D} be wild categories with functors $L: \mathcal{C} \to \mathcal{D}$ and $R: \mathcal{D} \to \mathcal{C}$. Let Γ be a graph and $F: \Gamma \to \mathcal{C}$ be a \mathcal{C} -valued diagram over Γ . Consider a cocone (C, r, K) under F where $r_i: F_i \to C$ for vertices $i: \Gamma_0$ and $K_{i,j,g}: r_j \circ F_{i,j,g} = r_i$ for $i, j: \Gamma_0$ and edges $g: \Gamma_1(i, j)$. As notation abuse, we write $L(K_{i,j,g})$ as the witness for $L(r_j) \circ L(F_{i,j,g}) = L(r_i)$ derived from the composition law L_\circ of L. Suppose this cocone (C, r, K) is colimiting. Further, suppose that $L \dashv R$, witnessed by a family

Suppose this cocone (C, r, K) is columiting. Further, suppose that $L \dashv R$, witnessed by a family of hom-equivalences $\alpha : \prod_{X:Ob(\mathcal{D})} \prod_{A:Ob(\mathcal{C})} \hom_{\mathcal{D}}(LA, X) \xrightarrow{\simeq} \hom_{\mathcal{C}}(A, RX)$ together with proofs V_1 and V_2 of the naturality of α in X and A, respectively. We wish to replay the second classical proof by showing the chain of isomorphisms (iso) equals the canonical post-composition map.

Let ζ denote the composite of these isomorphisms. By function extensionality, it suffices to show ζ and post-composition are equal on h for every $h : \hom_{\mathcal{D}}(L(C), Y)$. For each $i : \Gamma_0$, we can build an

equality $Q_i : \alpha^{-1}(\alpha(h) \circ r_i) = h \circ L(r_i)$ from V_2 and the equivalence data for α . By the structure identity principle for lim, it suffices to show the following equality for all $i, j : \Gamma_0$ and $g : \Gamma_1(i, j)$:

$$\mathsf{ap}_{-\circ L(F_{i,j,g})}(Q_j)^{-1} \cdot \mathsf{pr}_2(\zeta(h))(j,i,g) = \mathsf{assoc}(h, L(r_j), L(F_{i,j,g})) \cdot \mathsf{ap}_{h\circ-}(L(K_{i,j,g})) \tag{eq}$$

The problem is that this equality need not hold for wild categories.

Example 1. Define the wild category \mathcal{E} by $\mathsf{Ob}(\mathcal{E}) \coloneqq *$, $\hom_{\mathcal{E}}(*, *) \coloneqq S^1$. The remaining structure on \mathcal{E} comes from the associative *H*-space structure \bullet on S^1 . For all $\ell : \hom_{\mathcal{E}}(*, *)$, we have a nontrivial loop loop_{ℓ} at ℓ . Let $\Lambda : \mathcal{E} \to \mathcal{E}$ be the identity on objects and morphisms, but let $\Lambda_{\circ}(\ell_1, \ell_2) \coloneqq \mathsf{loop}_{\ell_1 \bullet \ell_2}$. If $h \equiv \mathsf{id}_*$, it is provably false that the evident hom-adjunction $\Lambda \dashv \Lambda$ satisfies (eq).

We isolate the following general property of an adjunction as a sufficient condition for (eq).

Definition 2. Consider again the adjunction $L \dashv R$. We say that L is 2-coherent if for all h_1 : hom_{\mathcal{D}}(L(X), Y), h_2 : hom_{\mathcal{C}}(Z, X), and h_3 : hom_{\mathcal{C}}(W, Z), the following diagram commutes:

$$\begin{array}{c} (\alpha(h_{1}) \circ h_{2}) \circ h_{3} & \xrightarrow{\text{assoc}(\alpha(h_{1}),h_{2},h_{3})} \\ \alpha(h_{1} \circ h_{2}) \circ h_{3} & \|V_{2}(h_{2} \circ h_{3},h_{1}) \\ \alpha(h_{1} \circ L(h_{2})) \circ h_{3} & \alpha(h_{1} \circ L(h_{2} \circ h_{3})) \\ V_{2}(h_{3},h_{1} \circ L(h_{2})) \| & \| \text{ap}_{\alpha}(\text{ap}_{h_{1} \circ -}(L_{\circ}(h_{2},h_{3}))) \\ \alpha((h_{1} \circ L(h_{2})) \circ L(h_{3})) & \xrightarrow{\text{assoc}(h_{1},L(h_{2}),L(h_{3})))} \alpha(h_{1} \circ (L(h_{2}) \circ L(h_{3}))) \end{array}$$

$$(2-\operatorname{coh})$$

Theorem 3. If L is 2-coherent, then the cocone (L(C), L(r), L(K)) under L(F) is colimiting.

Proof. By routine computation, (eq) is equivalent to $(2-\cosh)$ with h_1 , h_2 , and h_3 instantiated with h, r_j , and $F_{i,j,g}$, respectively.

Example 4. The *n*-truncation functor $||-||_n : A/\mathcal{U} \to A/\mathcal{U}$ is 2-coherent on all coslices of a universe. We have formalized this fact in Agda [6]. This example is critical to constructing colimits in categories of higher groups [2], which is examined in [4, Section 7.1].

Suspension is 2-coherent

Knowing that the suspension functor $\Sigma : \mathcal{U}^* \to \mathcal{U}^*$ preserves colimits has a few applications. For example, this would imply that *acyclic* types [1] are closed under colimits in \mathcal{U}^* . It also would greatly simplify the construction of stable homotopy as a homology theory [3, Corollary 2.4]. Thus, we'd like to verify that Σ is a 2-coherent left adjoint of Ω and thus preserves colimits. Here, the structure identity principle turns 2-coherence into a homotopy of homotopy of pointed maps.

Definition 5. Let f_1 and f_2 be pointed maps and let $(H_1, \kappa_1), (H_2, \kappa_2) : f_1 \sim_* f_2$. A homotopy between (H_1, κ_1) and (H_2, κ_2) consists of a homotopy $\mu : H_1 \sim H_2$ and a path $M_\mu : \kappa_1 =_\mu \kappa_2$ over μ .

When building the relevant homotopy of homotopies for Σ in (non-Cubical) Agda, we can derive μ from an elaborate but tractable computation. The term M_{μ} , however, is infeasible to construct directly. Luckily, we can avoid it by adapting *Cavallo's trick* for homogeneous types [9, Homogeneous]. In fact, we use a slightly modified notion: a pointed type is *strongly homogeneous* if it's homogeneous such that the automorphism is the identity for the basepoint.

Lemma 6. Let $f_1, f_2 : X_1 \to X_2$ with X_2 strongly homogeneous. Let $(H_1, \kappa_1), (H_2, \kappa_2) : f_1 \sim f_2$. If $H_1 \sim H_2$, then (H_1, κ_1) and (H_2, κ_2) are homotopic.

As loop spaces are strongly homogeneous, we avoid the infeasible construction and conclude that Σ is 2-coherent. We have formalized this fact in Agda [5].

References

- Ulrik Buchholtz, Tom de Jong, and Egbert Rijke. Epimorphisms and Acyclic Types in Univalent Foundations, 2024.
- [2] Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke. Higher Groups in Homotopy Type Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '18, page 205–214, New York, NY, USA, 2018. Association for Computing Machinery.
- [3] Robert Graham. Synthetic Homology in Homotopy Type Theory, 2018.
- [4] Perry Hart and Kuen-Bang Hou (Favonia). Coslice Colimits in Homotopy Type Theory, 2024.
- [5] Perry Hart and Kuen-Bang Hou (Favonia). Suspension is 2-coherent (in Agda). https://github .com/PHart3/colimits-agda/blob/v0.2.0/HoTT-Agda/theorems/homotopy/SuspAdjointL oop.agda, December 2024.
- [6] Perry Hart and Kuen-Bang Hou (Favonia). Truncation is 2-coherent (in Agda). https://github .com/PHart3/colimits-agda/blob/e0fff712d88aee353844858557855d62c1bbcb93/Colimi t-code/Trunc-Cos/TruncAdj.agda, December 2024.
- [7] Saunders MacLane. Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer, 1978.
- [8] Emily Riehl. *Category Theory in Context.* Aurora: Dover Modern Math Originals. Dover Publications, 2016.
- [9] The Agda Community. Cubical Agda Library, February 2024. version 0.7.