
The Arend theorem prover

Valery Isaev Fedor Part Sergey Sinchuk

This talk is an exposition of the Arend Interactive Theorem Prover (ITP) [1] developed at JetBrains
Research. The development of Arend started in 2015 at JetBrains Research with the aim of building a
modern ITP with a native support for HoTT/UF [7]. Its three major components are the Arend language,
which based on a variant of MLTT with a native support for HoTT/UF, a tooling for it provided by Arend
plugin for IntelliJ IDEA and the standard library arend-lib which focuses on formalization of constructive
mathematics, synthetic homotopy theory and computer science.

Type theory. At the core of the type theory of Arend is the homotopy type theory with interval type
(HoTT-I) formulated by Valery Isaev in 2014 [2]. HoTT-I is a minor, more extensional, modification of MLTT
obtained by introducing a primitive type I for the interval and defining the equality type (the path type) in
terms of I. Function extensionality is derivable and is fully computational in this theory. This setup gives rise
to a variant of cubical syntax: n-dimensional homotopies in a type A are naturally represented in HoTT-I as
functions In → A. The univalence is added to HoTT-I as an axiom with some built-in computational rules.

The native support for HoTT/UF in the type theory of Arend is further amplified by the following
extensions of HoTT-I:

1. Inductive types with conditions. Using the primitive I, a path constructor can be defined simply
as a constructor pcon (i : I) with an interval type parameter, or multiple parameters for higher-dimensional
homotopies. The only difference with an ordinary constructor is that there could be conditions that dictate
how pcon evaluates at the ends of the interval to other constructors: pcon left⇒ con1, pcon right⇒ con2. In
particular, it implies con1 = con2 but does not lead to contradictions as in the case of standard inductive
types in MLTT, thanks to a modified elimination principle that requires the preservation of conditions. This
provides support for higher inductive types and, in particular, quotients with computational behavior [9].

2. Universes Prop and Set matching h-propositions and h-sets. Arend incorporates an impred-
icative universe Prop that captures the logic of h-propositions and a predicative hierarchy of universes
Set 0 ⊂ Set 1 ⊂ . . . for h-sets. The universes Prop and Set provide a syntactic framework that facilitates
working within the set theory domain, akin to the elementary topos of h-sets, and distinctively delineate the
set-level aspect of the type theory from the higher levels, ensuring that set-theoretic formalization is confined
strictly to the subtheory prescribed by these universes.

3. Polymorphism for homotopy levels. Arend supports a mechanism for polymorphism on the
homotopy level: a single polymorphic definition can be instantiated to multiple versions for universes Prop,
Setn and universes of all types Typen.

The above outlines the core fragment of Arend’s type theory as it relates to HoTT/UF. Its key properties
include:

Computational behavior. Unlike MLTT augmented merely with axioms for univalence and higher
inductive types, Arend’s type theory includes a number of computational reduction rules for involved terms,
which prove crucial for practical usage. However, it lacks sufficient computational rules to render the theory
fully computational: the MLTT property that every closed term of type Nat evaluates to a canonical number
does not hold in Arend. The core theory of Arend represents one of the earliest and simplest forms of cubical
type theory [6, 8], in which the interval still functions as a type. More advanced, fully computational cubical
type theories have since evolved, in which univalence is derivable. However, these approaches are considerably
more complex, featuring two-level theories where the interval I is not a type. While the development of such
fully computational theories is of theoretical interest, the complexity of two-level frameworks do not currently
justify their use in practical applications. The type theory of Arend could potentially be adjusted to enhance
its computational aspects, but practical experiences in formalization have not demonstrated a significant
need for such enhancements.

Constructivity. The type theory of Arend is inherently constructive. In its core theory, the law of
excluded middle does not hold, and the axiom of choice is valid only in the form of unique choice. While the
axioms of classical logic can be consistently added and utilized in libraries, the main Arend library, arend-lib,
is dedicated to constructive mathematics, and no standard metas (tactics) utilize any classical axioms.

1



Finally, the type theory of Arend has the following extensions which are of great importance for formal-
ization and yet are not present in Coq, Lean or Agda:

1. Records with partial implementations and anonymous extensions. Type classes and records
in Arend support multiple inheritance with partial implementations: if D extends C an arbitrary subset of
fields of C can be implemented in D. Namely, for a field f of C its extension D may contain an expression
f ⇒ a specifying a value a for f . To create an object of D, only unimplemented fields need to be specified.
This erases the difference between parameters and fields of classes and records and allows for extensive
flexibility in constructing hierarchies of definitions. Moreover, a record type, where a subset of fields of C get
implemented, can be created on the fly in Arend as an anonymous extension C{f1 ⇒ a1, . . . , fk ⇒ ak}.

2. Array types. Arend has the type of arrays ArrayA, where A : Type, which subsumes the type of lists
of elements of type A, the type of vectors of elements of type A of fixed length n and the type Finn→ A of
functions from a finite set of cardinality n to A. The type Array is a record with fields A : Type, len : Nat and
at : Fin len → A. The anonymous extension ArrayA is the type of arrays of various lengths with elements
of type A and the extension ArrayAn is the type of arrays of fixed length n. The key property of the
type of arrays is a computational form of extensionality: if two arrays of constant length are elementwise
computationally equal then they are computationally equal.

IntelliJ IDEA plugin. The easiest way to use Arend is through the tooling provided by the Arend
plugin for IntelliJ IDEA. IntelliJ IDEA, developed by JetBrains, is a versatile IDE with intelligent code
assistance, robust refactoring tools, and seamless integration with languages like Java, Kotlin, and Python. It
has a variety of built-in tools for version control, debugging and testing. Some of the features of Arend plugin:

1. Incremental type checking. Under normal circumstances the Arend plugin uses the so-called
“on-the-fly” (or smart) mode of type checking. In this mode, the type checker operates in a background thread,
automatically reprocessing each code modification made by the user.

2. Editor features. The Arend editor supports a variety of features that greatly simplify working with
Arend code such as: auto-completion of identifiers; auto-fixes for Arend errors; code auto-adjustments such as
adding missing clauses in pattern matching; refactorings such as handling consequences of changing signatures
of definitions or moving definitions; navigation tools such as Go to Declaration, Find Usages or Proof Search;
quick documentation popups supporting LaTeX; parameter hint tooltip which can be invoked in application
expressions and so on.

The arend-lib library. The main Arend library arend-lib can be divided into three parts which are
developed constructively (without the excluded middle or the axiom of choice):

1. Constructive mathematics. This is the main part of the library. The mathematical landscape in
the constructive setting is richer than in the classical setting since classically equivalent definitions often
become inequivalent constructively.

This part contains the following: schemes via locally ringed locales; PID domains and the proof that
they are 1-dimensional Smith domains; splitting fields of polynomials and algebraic closure for countable,
decidable fields; connection between zero-dimensional and integral extensions; matrices over commutative
rings, determinants, characteristic polynomials, Cayley-Hamilton theorem; linear algebra over Smith domains;
integral ring extensions; polynomials over one or several variables; Nakayama’s lemma; derivative over
topological rings; directed limits for sequences and functions; series and power series; natural, integer, rational,
real and complex numbers and various structures on them; categories, functors, adjoint functors, Kan
extensions, (co)limits; elementary topoi and Grothendieck topoi; topological spaces, locales, uniform spaces,
completion of spaces.

The main references are the books [5, 4] and the paper on constructive complete spaces by Isaev [3].
2. Synthetic homotopy theory. The following has been formalized synthetically that is under types

as homotopy types viewpoint: Eckmann-Hilton argument; K1(G); Hopf fibration; localization of universes
and modalities; Generalized Blakers-Massey theorem.

3. Computer science. Currently this part consists of formalization of high-order term rewriting systems.
The planned future formalizations include fragments of computational complexity theory.

2



References

[1] Arend site. https://arend-lang.github.io.

[2] Valery Isaev. Models of homotopy type theory with an interval type, 2020. Available at: https:

//arxiv.org/abs/2004.14195.

[3] Valery Isaev. A constructive approach to complete spaces, 2024. Available at: https://arxiv.org/abs/
2401.12345.

[4] H. Lombardi and C. Quitté. Commutative Algebra: Constructive Methods: Finite Projective Modules.
Algebra and Applications. Springer Netherlands, 2015.

[5] R. Mines, F. Richman, and W. Ruitenburg. A Course in Constructive Algebra. 3Island Press, 1987.

[6] Anders Mörtberg. Cubical methods in homotopy type theory and univalent foundations. Mathematical
Structures in Computer Science, 31(10):1147–1184, 2021.

[7] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics.
https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[8] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical agda: a dependently typed programming
language with univalence and higher inductive types. Proc. ACM Program. Lang., 2019.

[9] Tesla Zhang and Valery Isaev. (co)condition hits the path, 2024. Available at:
url=https://arxiv.org/abs/2405.12994.

3

https://arend-lang.github.io
https://arxiv.org/abs/2004.14195
https://arxiv.org/abs/2004.14195
https://arxiv.org/abs/2401.12345
https://arxiv.org/abs/2401.12345
https://homotopytypetheory.org/book

