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In previous work [1] we showed how to define the category of spaces S in the simplicial type
theory of Riehl and Shulman [2] by moving to a modal type theory and working in the larger
model of cubical spaces. Now we’d like to report on more recent work [3], in which we add a
twisted arrow modality in order to construct the Yoneda embedding. We then take advantage
of this in order to deduce a host of classical results, including:

• that pointwise invertible maps in C → D are invertible;
• that pointwise left adjoints are left adjoints;
• that (co)limits are computed pointwise in C → D;
• the theory and existence of pointwise Kan extensions;
• Quillen’s theorem A;
• the properness of cocartesian fibrations (cf. [4]).

Our synthetic approach gives proofs of comparative complexity to those in 1-category theory,
while applying to (∞, 1)-categories, yielding a drastic reduction in technicality. It has parallels
to the synthetic higher category theory of [5], though in our theory not every type is a category.
A consequence of this is that we are able to prove some of their axioms to be valid in our theory.
Though our theory lacks a number of the results that [5] have established we are optimistic
that, pending further investigations and possibly extensions, we will eventually be able to
reproduce most of their results in our theory as well, at least insofar as they pertain to the
“category-theoretic fragment.”

Let us now describe in more detail the setting, the axioms regarding twisted arrows, and
some of the results obtained.

Setting Simplicial type theory allows us to do synthetic category theory by postulating a
directed interval type I, a bounded distributive lattice (0, 1,∨,∧) such that

∏
i,j:I i ≤ j ∨ j ≤ i

holds. The synthetic morphisms in a type X are then given by maps I → X. From I we can
define the n-cubes In, from which we isolate simplices ∆n, boundaries ∂∆n, and horns Λn

k . In
particular, ∆2 → X represents an 2-cell in X witnessing the composition of two arrows, and
Λ2
1 → X represents a pair of composable arrow (without a composite).

Definition 1. A precategory is a type X satisfying the Segal condition: isEquiv(X∆2 → XΛ2
1).

A category is a precategory X satisfying the Rezk condition:
∏

x,y:C isEquiv((x = y) → iso(x, y)),
where iso(x, y) is the type of isomorphisms from x to y (i.e., admitting left and right inverses).

The theory of adjunctions in this setting has been developed already by Riehl and Shulman
[2] and that of (co)limits by Bardomiano Martínez [6]. To get any useful examples of categories,
we constructed in [1] a subuniverse S satisfying, among other things:

• If X : A → S, then the composite A → U is covariant, as defined in [2].
• The converse holds for A :♭ U , X :♭ A → U : if X is covariant, then X factors through S.

Notice that we here make use of (multi)modal type theory, MTT [7, 8] to restrict in the converse
direction to crisp families, i.e., with no implied functoriality. This is similar to the use of spatial
type theory [9] to allow quantification over topological ∞-groupoids with no implied continuity.
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We use a mode theory with a single mode for simplicial spaces and the following modalities
in addition to ♭: ♯ (the right adjoint to ♭), op (the opposite simplicial space), and tw (twisted
arrows, see below), subject to the following (in)equalities:

♭ ◦ ♭ = ♭ ◦ op = ♭ ◦ ♯ = ♭ ♯ ◦ ♯ = ♯ ◦ op = ♯ ◦ ♭ = ♯ op ◦ op = id ♭ ≤ id ≤ ♯ ♭ ≤ tw

Each modality µ acts on types X, written ⟨µ | X⟩. Intuitively, for crisp categories C, the actions
of the modalities can be described as follows: ⟨♭ | C⟩ is the space of points of C; ⟨♯ | C⟩ is the
codiscretization of C, where there is exactly one arrow between each pair of points; ⟨op | C⟩ is
the opposite category of C.

The twisted arrow modality If C is a crisp category, we may form the opposite category
⟨op | C⟩, and hence the presheaf category Ĉ := S⟨op|C⟩. However, we need an extra ingredient
to form the Yoneda embedding y : C → Ĉ. Indeed, taking synthetic morphisms gives a map
hom(−,−) : C × C → U that doesn’t factor through S. What is required instead is a function
Φ : ⟨op | C⟩ × C → S such that Φ(modop(c),−) = hom(c,−) whenever c :♭ C, i.e., a function
that agrees on objects with hom(−,−) and has the same functoriality in the second argument,
but takes ⟨op | C⟩, introduced via modop(), as its first argument. This is where tw comes in.
We axiomatize this such that the space of n-simplices in ⟨tw | C⟩, ⟨♭ | ∆n → ⟨tw | C⟩⟩, can be
visualized as follows:

cn cn−1 · · · c0

cn+1 cn+2 · · · c2n

(1)

That is, we get a covariant function ⟨tw | C⟩ → ⟨op | C⟩×C, and the induced map ⟨op | C⟩×C →
S is the desired function Φ. Then we define y := λc.Φ(−, c) to be the Yoneda embedding. The
analogy of ⟨tw | C⟩ with the usual arrow category is as follows: while arrows in Arr(C) := CI

are squares as usual (left), arrows in ⟨tw | C⟩ are twisted squares (right):
a a′

b b′

a

b

a′

b′

Some selected results The first result is the functorial Yoneda lemma, improving on the
version in [2]: There is a natural isomorphism ΦĈ(y

†(−),−) ∼= eval : ⟨op | C⟩ × Ĉ → S. Here
we use both ΦC , in the guise of the opposite of y, y† : ⟨op | C⟩ → ⟨op | Ĉ⟩, as well as ΦĈ .

Next, we prove that pointwise left adjoint are left adjoints, where f :♭ C → D is a pointwise
left adjoint if Φ(f†(−), d) is representable for all d :♭ D. Using this we get examples of adjunctions,
including the left adjoint f! to the pullback map f∗ :♭ D̂ → Ĉ induced by a functor f :♭ C → D.

Finally, let us mention the theory of Kan extensions, where we get the expected results, e.g.,
if E is a crisp cocomplete category and f :♭ C → D, then the left Kan extension functor, lanf ,
exists, and if X :♭ C → E, d : D, then lanf X d = lim−→(C/d → C → E).

Prospect of formalization A good part of simplicial type theory has been formalized in
Kudasov’s proof assistant Rzk [10]. We hope that, pending the development of a user-friendly
proof assistant for (a version of) MTT, all of our results should eventually formalizable, too.
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