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Witold Hurewicz is one of the most important names in algebraic topology. Most famously, he
is credited with the definition of higher homotopy groups and with the Hurewicz theorem which
establishes a relation between these and homology groups. Interestingly, Hurewicz worked from 1927
to 1936 as an assistant of L.E.J. Brouwer, the father of intuitionism. However, it seems that Hurewicz
did not inherit his mentor’s interest for constructive proofs. In this abstract, we will do our best to
posthumously reconcile these two mathematicians by giving a constructive proof of the Hurewicz
theorem in Homotopy Type Theory.

We should note that Christensen and Scoccola have already proved a version of the Hurewicz
theorem in HoTT [CS23]. First, they work with a homology theory defined in terms of stable homotopy
groups, while we work with cellular homology (two theories which are not known to be equivalent in
HoTT). Second, their proof boils down to connectedness properties of the smash product, while our
strategy relies on the argument that n-connected spaces may be approximated by CW complexes with
no nontrivial cells in dimension ≤ n – an argument which somewhat surprisingly holds constructively
and by all means is interesting in its own right. We borrow the definition of CW complexes from last
year’s submission [LMP24] which in turn is based on Buchholtz and Favonia’s definition [BH18].

Definition 1. A CW structure is a sequence of types and maps

(X−1
ι−1−−→ X0

ι0−→ X1
ι1−→ . . . ) equipped with a function c : N → N and

a set of attaching maps αi : S
i × Fin(ci+1) → Xi for i ≥ −1 s.t. X−1

Si × Fin(ci+1) Fin(ci+1)

Xi Xi+1

snd

αi ⌟
is empty and the square on the right is a pushout. A type A is said to be a CW complex if there
merely exists some CW structure X∗ s.t. A is equivalent to the sequential colimit of X∗, i.e. A ≃ X∞.

Informally, a CW complex is a type that can be built by an iterative process of attaching cells:
we start with a finite number of 0-dimensional points, then we add a finite amount of 1-dimensional
edges, then we add a finite amount of 2-dimensional discs, and so on. These explicit descriptions are
quite convenient for defining properties and operations by induction on dimensions. Most notably,
Buchholtz and Favonia showed how to define the cellular (co)homology groups of any CW complex.
Recently, we proved that their definition of cellular homology groups forms a homology theory.

Proposition 2. Given any integer n ≥ 0, one can define a functor H̃n from the category of CW
complexes to the category of abelian groups. Moreover, the resulting family of functors satisfy the
Eilenberg-Steenrod axioms for reduced homology.

Our goal here, however, is to prove the cellular Hurewicz theorem, which informally states that if
a CW complex is (n− 1)-connected, then its cellular homology groups coincide with its homotopy
groups up to dimension n (up to abelianisation in the case n = 1). The classical proof of this theorem
takes an arbitrary (n− 1)-connected CW complex, and replaces its CW structure with an alternative
one with no nontrivial cells in dimension < n. This is done by defining the new set of n-cells to be the
nth homotopy group of the space, from which the Hurewicz theorem will follow. Unfortunately, this
approach will not work with our definition of CW complexes which only allows a finite number of cells
in every dimension, since finite CW complexes tend to have infinite homotopy groups (think of the
n-sphere for instance). Thankfully, it turns out that a slightly different approximation theorem is
provable without leaving the world of finite CW complexes.

Definition 3. We say that a CW structure X∗ is Hurewicz n-connected if cX0 = 1 and cXi = 0 for
0 < i ≤ n. We use the same terminology for CW complexes which merely have a Hurewicz n-connected
CW structure.

Theorem 4. A CW complex is n-connected if and only if it is Hurewicz n-connected.
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Proof. A formal proof is available at https://github.com/agda/cubical/blob/master/Cubical/
CW/Connected.agda.

With this approximation theorem, we are in a position to compute the homology and the homotopy
of (n− 1)-connected CW complexes. First, say that a type is an n-dimensional sphere bouquet if it can
be written as

∨
A Sn for some finite set A. Then, Theorem 4 implies that for any (n−1)-connected CW

complex X∗, the (n+ 1)-skeleton Xn+1 is equivalent to the cofibre of a pointed map of n-dimensional
sphere bouquets:

Xn+1 ≃ cofib
(∨

A

Sn f−−→⋆

∨
B

Sn
)
.

Now, note that H̃n(X∗) = H̃n(Xn+1) for reasons of connectedness. We can compute this group using
the exactness property of cellular homology: consider the sequence∨

A

Sn f−→
∨
B

Sn cfcod−−−→ Cf
cfcod−−−→ C(cfcod:

∨
B

Sn→Cf ) ≃
∨
A

Sn+1

where Cf denotes the cofibre of f , cfcod denotes the embedding of the codomain into the cofibre, and
the final equivalence is a standard characterisation of Xn+1/Xn for CW structures [BH18]. This is a
cofibre sequence, and so the following sequence is exact:

H̃n

(∨
A

Sn
)

f∗−→ H̃n

(∨
B

Sn
)

cfcod∗−−−−→ H̃n(Cf ) → 0

where the final 0 comes from that fact that H̃n vanishes on
∨

A Sn+1. We can compute the first two

homology groups using additivity, and thus we see that H̃n(Cf ) ∼= Z[B]/Z[A]. Similarly, the group
πn(X∗) is equal to πn(Xn+1), which is computed by the following lemma.

Proposition 5. For any f :
∨

A Sn →
∨

B Sn where n ≥ 1 and A and B are finite types, there is an
exact sequence

πn (
∨

A Sn)
f∗−→ πn (

∨
B Sn)

cfcod∗−−−−→→ πn(Cf ).

Proof. This follows from the Seifert-Van Kampen theorem [UF13, Example 8.7.17] in the case n = 1,
and from the Blakers-Massey theorem [Fav+16] in the case n > 1.

The case n = 1 is a bit special: the fundamental group of a bouquet of circles is a free group
rather than a free abelian group. Therefore, in order to match what happens with homology, we
introduce the abelian homotopy group functor πab

n which is simply defined as the abelianisation of πn.
With this minor correction, we obtain that πab

n (Cf ) ∼= Z[B]/Z[A]. Thus, we have proved that the nth
homology group coincides with the abelianisation of the nth homotopy group for a (n− 1)-connected
CW complex. The Hurewicz theorem actually goes a step further that this, and gives an explicit
description for the isomorphism between these two groups but checking that this map agrees with the
one induced by our proof is direct.

Theorem 6. Let X be a CW complex. Define the Hurewicz homomorphism η : πn(X) → H̃n(X)

on canonical elements f : Sn →⋆ X by letting η(|f |) : H̃n(X) be the image of 1 under the composition

Z ∼−→ H̃n(Sn)
f∗−→ H̃n(X).

Theorem 7. The Hurewicz homomorphism η : πab
n (X) → H̃n(X) is an isomorphism for any (n− 1)-

connected CW complex X.

Proof. A formal proof is available at https://github.com/loic-p/cellular/blob/main/Hurewicz/
Map.agda (HurewiczTheorem).

In conclusion, we have a fully mechanised proof of the Hurewicz theorem for cellular homology.
This development was motivated by the recent proof of the Serre Finiteness theorem by Barton and
Campion [Bar22], which relies on homology computations and the Hurewicz theorem. We hope that
our formal development will be helpful to the ongoing formalisation of the Serre Finiteness theorem
(by, in particular, Milner [Mil23]).
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