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The subject is to present the ideas underlying Cellular Type Theory (CellTT), a type theory I am working
on. The aim is to have a theory akin to Simplicial Type Theory (STT) of Riehl and Shulman [3], but where
types should be thought as presheaves over the category of cells Θ, instead of ∆. So CellTT should be to
Θ-spaces [2] what STT is to Segal spaces. Note that this is very much work in progress as it is the subject
of my ongoing thesis, supervised by Mimram. Most of the mathematical theory underlying the definitions
given in the next section are compiled in Loubaton’s Thesis [1].

1 Main ideas

1.1 Differences with the (∞, 1)-case. In Simplicial Type Theory, hom types are discrete, in the sense that
they are ∞-groupoids. This occurs because Rezk-types are “only” (∞, 1)-categories. While in the (∞, ω)-
setting, hom types of (∞, ω)-categories should remain (in general, non-discrete) (∞, ω)-categories. This
crucial difference allows the authors of STT to define hom types as usual mapping spaces

homA(x, y) = ∑
f :I→A

f (0) = x × f (1) = y

where I - a directed interval - is interpreted as the Yoneda embedding of the 1-simplex (seen as an ob-
ject of ∆, in the (∞, 1)-case, and as an object of Θ, in the (∞, ω)-case). Howether, when working with
(∞, ω)-categories, this mapping type behaves differently to the hom type. A 2-cell in A should be a map
I → (I → A) with boundary conditions, which by Curryfication, should be the same as a map I2 → A with
boundary conditions. Whereas I2 is only a 1-categorical object. Hence, we must find a way to define the
hom type differently.

1.2 Introducing ♭. One way to do so is to work with an idempotent modality which is comonadic, for
instance building upon Crisp Type Theory, as introduced by Shulman in [4]. Here, our flat modality comes
from an adjunction :

S [Θop, S ]

δ

ev∗=(F 7→F(∗))

⊣

where S is the (∞, 1)-categeory of spaces, and δ(X) is the constant functor equal to X. We then have an
idempotent comonad ♭ = δ ◦ ev∗ : [Θop, S ] → [Θop, S ]. This setting falls in the broader one of local toposes
which should be model of the spatial fragment of cohesive HoTT.

This modality allows us to speak about the types of “points” X∗ of a type X by seing it as a discrete (i.e.
constant) presheaf (i.e. type). When working with a type which is an (∞, ω)-category, it should computes
its core.

1.3 Pasting schemes. We define inductively the type of pasting schemes PS, which is a set, and corresponds
to the objects of the category Θ. It has a unique constructor cons : PSList → PS. We denote succintly
[P1, · · · , Pn] the pasting scheme cons[P1, · · · , Pn], and $ : PS → PS the operation (of suspension) P 7→ [P].

Then [n] denotes the list [[], [], · · · , []] of length n, and On = $n[] is the list [[· · · [] · · · ]] containing n + 1
pairs of brackets.
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One may also define types Hom(P, Q) for the morphisms of Θ between P, Q : PS, which are sets too.

1.4 Yoneda embedding and suspension. Then we postulate the existence of a Yoneda embedding
∥–∥ : PS → U (which may be thought as the (∞, ω)-category associated to a pasting scheme), together with
a suspension opration $′ : U → U•, • extending to all types the suspension of pasting schemes $ : PS → PS.
where U•, • denotes the type of bipointed types. We let 1 :≡ ∥∆0∥, I :≡ ∥∆1∥ ≡ ∥O1∥ and Dn :≡ ∥On∥. A
type A is said to be discrete iff for all P : PS, the canonical map A → (∥P∥ → A) is an equivalence. And
we axiomatize that this is the same as having the counit ♭A → A being an equivalence. This axiom will be
called cellular cohesion.
Now, for each type, we may consider its P-cells for any crisp P : PS: XP :≡ ♭(∥(∥P) → X). Moreover, each
crisp map f : X → Y will induce maps XP → YP for each P. By postulating that objectwise equivalences are
equivalences, we may show that 1 is contractible, or that equality of maps are given by objectwise equalities.

1.5 Hom types. For a type A and x, y : A, we postulate a type homA(x, y) together with the probing principle

(∥P∥ → homA(x, y))♭ ∼= (∥$P∥ →•, • (A, x, y))♭

naturally in P and functorially in A. This way, the hom type is seen as coming from an adjunction with the
suspension

[Θop, S ] [Θop, S ]

$

hom

⊣

1.6 (non-fibrant) Realization of a pasting scheme. One may define a realization of any pasting scheme
P ≡ [P1, · · · , Pm], denoted |P|, as the following colimit of types.

|[P1, · · · , Pm]| :≡

colim

1 1 1

$′|P1| $′|P2| · · · $′|Pm|

1.7 Segal types. There is a canonical map |P| → ∥P∥, and one say that a type A is a Segal-type, whenever
for each P : PS the following maps (induced by precomposition) are aquivalences

(∥P∥ → A)♭ → (|P| → A)♭ .

1.8 (∞, ω)-categories. We should also have a notion of completeness, in the same sense as in simplicial
type theory. And types which should be thought as (∞, ω)-categories should correspond to the one that are
Segal and complete.

2 What is to be done

Once the definition of Segal and complete types have been given, it makes sense to ask if a type is an infinity
category or not. For instance, one has very formally that a product of Segal types is Segal, or that the unit
type is Segal. What is harder, and is one of the main goals of my ongoing work, is to prove a Yoneda lemma
in this setting.
This requires having a well-suited definition of fibration (because I cannot hope for a directed univalent
universe at the moment), and to prove that homA(–, a) is an (op)fibration when A is an (∞, ω)-category.

A more accessible result which I’m working on at the moment is the property that whenever a type is
Segal, its hom type should be a Segal type too. This seems possible, although not straitforward to formalize
(in ♭-AGDA). And I hope to have established this result by the time of my presentation at HoTT-UF 2025.
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