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In constructive mathematics, and the internal language of topoi, constructing modalities is a
common tool. For instance, in [2, Section 8] an internal model of synthetic algebraic geometry
is constructed. Their method is to begin with a simple axiomatic setting, describing a presheaf
category: the classifying topos of the theory of rings. Then, they define a modality corresponding
to an ordinary external Grothendieck topology, and it is shown the subuniverse described by this
modality satisfies the axioms of synthetic algebraic geometry. In [3], a similar method is used to
carve out the category of simplicial spaces out of a larger presheaf topos.

In the present work [10], we describe a systematic framework for describing similar modalities
across various axiomatic systems. In this framework we show internal sheaf conditions, a useful
tool for proving when an n-truncated type lives in a subuniverse. Given a further condition on
the presentation, that of projectivity, we give a descent condition for sheaf cohomology. We
apply this descent condition to synthetic algebraic geometry to replicate a well known result from
algebraic geometry: calculating the cohomology of quasi-coherent sheaves in several topoi.

Modalities The general theory of (monadic, idempotent) modalities has been investigated
by Spitters, Shulman, and Rijke [8]. There, a modality is described by an operator on types
⃝ : U → U , with a family η : (A : U) → A → ⃝A, satisfying a modal induction principal. Not
all modalities correspond a subtopos, only the left exact ones, which are called lex modalities.
Further, they distinguish a class of modalities externally corresponding to localisations via a
Grothendieck topology. Given a family P : I → PropU , a type X is called a P -sheaf if for all
i : I, the diagonal X → (P (i) → X) is an equivalence. From this family, we can form a modality
⃝P , naturally satisfying that ⃝P X is P -null for all X : U . A modality of this form is called
topological.

Presentations Following Moeneclaey [5], we encode of the notion of Grothendieck topology
internally: A presentation is a collection T of types so that 1 ∈ T , which is closed under
Σ. Given such a family, the modality it presents is nullification at the family {∥X∥ | X ∈ T},
where ∥X∥ is the propositional truncation. We call a sheaf for this family a T -sheaf, and denote
sheafification by ⃝T . A map f : A → B is a T -cover if for all b : B, the fiber fibf (b) is in T .

Sheaf conditions Given a presentation, we prove a novel internal version of (higher) sheaf
conditions. Given a map f : A → B and n ≥ 0, we can form its n-fold iterated join power
A∗Bn [6]. Our result is then:

Theorem 1 (Sheaf condition) Let T be a presentation and X be an n-type for n ≥ −2. Then
X is a T -sheaf iff for all covers f : A → B the natural map (B → X) → (A∗B(n+2) → X) is an
equivalence.
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Given a concrete natural number, say n = 0, this reduces to a more recognisable sheaf condition:

Corollary 2 A 0-type X is a T -sheaf iff for all covers f : A → B the natural map

XB → lim
(
XA ⇒ XA×BA

)
is an equivalence.

Projective presentations Externally, a presentation is understood as forming a Grothendieck
topology on a presheaf category, by choosing a coverage of representable functors. As representable
functors are tiny, they are internally projective, that is, they satisfy the internal axiom of choice.
We call a presentation T projective if all X ∈ T are projective. Given such a presentation, we
internally and constructively describe a method to calculate first cohomology of quasi-coherent
sheaves in several toposes, generalising the proof of [9, Tag 03P2].

Given a presentation T , a T -sheaf X and a group T -sheaf G, for each n ≥ 0 we define the
modal sheaf cohomology to be

Hn
T (X, G) := ⃝T ∥X → ⃝T K(G, n)∥0

where K(G, n) is the nth Eilenberg-MacLane space [4] and ∥_∥0 is set truncation.
We define an abelian group T -sheaf A to satisfy descent for T if for all X ∈ T the sequence

AX d0

−→ AX×X d1

−→ AX×X×X

is exact, where d0(f)(x, x′) := f(x) − f(x′) and d1(f)(x, x′, x′′) := f(x, x′) − f(x, x′′) + f(x′, x′′).

Theorem 3 Let T be a projective presentation, and A be an abelian group T -sheaf satisfying
descent. Then for all projective X we have H1

T (X, A) = ⃝T 0.

As a corollary we are able to show that for the fppf, étale and Zariski topoi, first cohomology
of affine schemes is zero on quasi-coherent modules, as these satisfy descent for the resepctive
topologies. Higher cohomologies are also zero, which can be bootstrapped from first cohomology
using the results of Blechschmidt, Cherubini, and Wärn [1].

Application For a generic setting featuring interesting presentations, we introduce a simple
axiomatic system, parametrised by a choice of algebraic theory T, with a model in the classifying
topos in T. These axioms are precisely analogous to those of the internal sheaf model in section 8
of [2]. We then build projective presentations in this system.

By specialising T to the theory of rings, we obtain the same axiomatisation used in [2], and
can derive the same results they do, but with our methods. We also establish the novel internal
proof of the cohomology of quasi-coherent sheaves.

If T is the theory of bounded distributive lattices, our axioms are similar to triangulated type
theory [3]. In particular there is a bounded distributive lattice I, taking the role of the interval.
In this setting we define a presentation for the simplicial modality. We apply the sheaf condition
to prove directly that the interval I is a simplicial type in plain type theory, in contrast to the
proof given by [3], which requires a modal extension of HoTT.

Future Work We hope this work will contribute to the methods used throughout synthetic
mathematics in HoTT. Additionally, we hope to apply the axioms for the internal logic of the
classifying topos of an algebraic theory to other domains, where similar approaches have been
taken, such as Simpson’s random topos [7].
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