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Containers are a representation of strictly positive data types, introduced by Abbott et
al. [1]. They consist of a type of shapes and a type of positions associated to each shape,
and are interpreted as polynomial endofunctors, modelling the polymorphic data types they
represent. Natural transformations of these functors model polymorphic functions of data types,
and interpretation of containers is functorial: Containers form a category in which morphisms
faithfully represent polymorphic functions.

Traditionally, the theory of containers is studied in Set-like categories. When interpreted
in such categories, the data of containers may however be too restrictive to encode certain
data types of interest. This is especially the case if one wants to account for symmetries, i.e.
identify configurations of positions when one can turn into the other via the action of certain
permutations. For example, one can represent ordered lists, but it is not possible to represent
cyclic lists or finite multisets as a container.

Some efforts have been made to enhance the expressivity of containers to represent data
types with symmetries. Abbott et al. [2] introduced quotient containers, which are containers
in which the assignment of values to positions is invariant under a group of permutations on po-
sitions. Interpretation of quotient containers embeds them as a subcategory of set-endofunctors,
targeting certain quotients of polynomial endofunctors, typically called analytic functors [9].

Symmetric containers, introduced by Gylterud [7], consist of a groupoid of shapes S and a
set-valued functor P : S → Set of positions. Symmetries are encoded directly in the isomor-
phisms of the shape groupoid, and are mapped, functorially, to permutations of sets of positions.
From the perspective of homotopy type theory, symmetric containers correspond to families of
positions P : S → hSet over shapes S : hGpd. Symmetric containers form a locally univalent
2-category SymmCont, and can be interpreted as polynomial endofunctors on the 2-category of
groupoids.

Quotient and symmetric containers are two different ways to extend the expressivity of
ordinary containers to include symmetries between positions. To understand how these two
approaches are related, we introduce an intermediate notion: action containers.

Definition. An action container (S ▷ P ◁σ G) consists of a set of shapes S and, for each shape
s, a set of positions Ps, a group Gs, and an action σs of Gs on Ps.

Example. The container Cyc := (N ▷ Fin ◁σZ) has Z acting on Fin(n) as follows: for each n,
let σn : Z → S(n), σn(k) := λℓ. (ℓ + k) mod n. This container represents cyclic lists: lists of
n elements are identified up to a cyclic shift by k : Z positions.

On one side, such containers generalize quotient containers, as the allowed permutations
are determined by the action of an arbitrary group, and are not restricted to subgroups of
symmetric groups of positions. On the other, they are a special case of symmetric containers:
a Gs-action is a functor from Gs (seen as a 1-object groupoid) to Set, and summation of these
functors over all shapes s yields a symmetric container.

Morphisms of action containers, unlike those of quotient containers, have to explicitly pre-
serve the structure of the groups acting on positions. We show that the category of action
containers is freely generated as a category of families, from which we easily derive closure
properties:
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Theorem. The category of action containers is the free coproduct completion of a category of
group actions and equivariant maps.

Proposition. Action containers are closed under arbitrary products, coproducts, and exponen-
tials with constant domain.

We show that action containers are a well-behaved subclass of symmetric containers by
defining a locally fully faithful 2-functor into SymmCont. We construct the 2-category of action
containers in a modular fashion: we start from a 2-category Group of groups, group homo-
morphisms and conjugators [8]. On this we define a 2-category of group actions, using the
techniques of displayed bicategories [4]. We then repeat a 2-categorical version of the Fam-
construction, presenting the 2-category of action containers as that of families of group actions,
ActCont := Fam(Action).

We observe that symmetric containers are exactly set bundles over homotopy groupoids (in
the sense of [5, §3.3]). Identifying the 2-categories of set bundles and symmetric containers, we
construct a 2-functor ActCont = Fam(Action) → SetBundle = SymmCont in multiple steps. Just
like the 1-category of groups is equivalent to the category of pointed connected groupoids, Group
is equivalent to the 2-category of connected groupoids. Thus, delooping of a group extends to a
2-functor B : Group

∼−→ hGpdconn ↪→ hGpd, which is locally a weak equivalence. Using displayed
machinery, we lift this to a local weak equivalence B̄ : Action → SetBundle of 2-categories.

The Fam-construction yields a 2-functor Fam(B̄) : Fam(Action) → Fam(SetBundle). We
show that the action of Fam preserves local fully-faithfullness, but that preservation of local
essential surjectivity requires an application of the axiom of choice. Finally, we describe a
2-functor Σ : Fam(SetBundle) → SetBundle performing summation of families of set bundles,
implicitly using the universal property of the Fam-construction as a free coproduct completion.

Theorem. The composite 2-functor

B∗ : ActCont = Fam(Action)
Fam(B̄)−−−−−→ Fam(SetBundle)

Σ−→ SetBundle = SymmCont

is locally fully faithful. It takes (S ▷ P ◁σ G) to a symmetric container with shapes
∑

s BGs.

This exhibits morphisms of action containers as a well-behaved class of morphisms of sym-
metric containers: local fully-faithfullness asserts that conjugators of action container mor-
phisms represent exactly identifications of symmetric container morphisms. At the same time,
this sheds light on the various ways in which symmetric containers are obtained in practice. For
example, [7, Ex. 3.1.2] obtains numerous containers by starting with a group G, and defining
B∗(1 ▷ G ◁µ G) where µ is G acting on itself by multiplication. Similarly, B∗(Cyc) has shapes
N×BZ = N× S1, and as positions n-fold covers of the circle S1.

Action containers model non-inductive strictly-positive data types. We are interested to see
if the same applies to inductive or coinductive types. In the setting of intensional type theory,
Ahrens et al. [3] have shown that extensions of general containers (without assumptions on
the truncation-level of shapes or positions) admit largest fixed points. Using Cubical Agda,
Damato et al. [6] show that such containers preserve both smallest and largest fixed points.
We want to know: Given an action container F , are smallest and largest fixed points of its
extension JB∗F K : hGpd → hGpd in groupoids represented by action containers? I.e. is there
a container µF such that JB∗(µF )K = µJB∗F K? If so, is it an initial object in a suitable 2-
category of algebras? Does the same apply to the largest fixed point νJB∗F K? In this case,
action containers would give a syntactic description of a sizeable class of (co)inductive data
types with symmetries.

We formalize our results using the Agda proof assistant, building on top of the agda/cubical
library [10]. Our code is freely available at https://github.com/phijor/cubical-containers.
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