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TAKEAWAY

MLTT with natural numbers, but without Π-types, is primitive recursive.
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PRIMITIVE RECURSION

Definition

The basic primitive recursive functions are constant functions, the successor function and projections of
type Nn → N. A primitive recursive function is obtained by finite applications of composition of the
basic p.r. functions and the primitive recursion operator

primrec : N → (N× N → N) → N → N
primrec(g, h, 0) = g

primrec(g, h, k + 1) = h(k,primrec(g, h, k)).
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MOTIVATION FOR CONSERVATIVE EXTENSION

▶ PRA as base theory for reverse mathematics [Simpson, 2009] and formal
metatheory [Kleene, 1952]

▶ Theorems encoded in base system

▶ More expressive base system -> less encoding

▶ Syntax closer to proof assistants -> enables formal verification

3 / 13



BEYOND PRIMITIVE RECURSION
A NONEXAMPLE

The Ackermann function A : N → (N → N) given by

A(0) = (n 7→ n + 1)

A(m + 1) =

{
0 7→ A(m, 1)
n + 1 7→ A(m,A(m + 1,n))

grows faster than any p.r. function. It requires elimination into a function type.
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PRIMITIVE RECURSIVE DEPENDENT TYPE THEORY

Takeaway

MLTT with natural numbers, but without Π-types, is primitive recursive.

Definition

Let T be a restriction of MLTT with a universe U0 closed under Σ- and intensional identity types
(but not Π-types), containing finite types, and a closed type N with standard elimination principle

n : N ⊢ X(n) : U0 ⊢ g : X(0) n : N, x : X(n) ⊢ h(n, x) : X(n + 1)
n : N ⊢ indg,h(n) : X(n)

for U0-small type families. Larger universes Uα may contain Π-types, and

Πn:NX(n) : U1.

Theorem

The definable terms
n : N ⊢ f (n) : N

in T are exactly the primitive recursive functions.
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POTENTIAL FURTHER EXTENSIONS

▶ Syntactically different standard natural numbers type with large elimination principle

▶ Finitary inductive types and type families, finitary induction-recursion, e.g. lists

▶ Primitive recursive universe of types – judgemental variant of internal p.r. Gödel encoding of
the codes in U0

▶ Comonadic modality □ for simultaneous recursion on □N × N (c.f. [Hofmann, 1997])

▶ Primitive Recursive Homotopy/Cubical Type Theory – not clear how to adapt our adequacy
proof
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RELATED WORK

▶ Calculus of Primitive Recursive Constructions [Herbelin and Patey, 2014] – PRTT has function
types in higher universes, closer to Agda syntax

▶ MLTT with recursion operators [Paulson, 1986]

▶ Partial recursive functions via inductive domain predicates [Bove, 2003]

▶ Coinductive types of partial elements [Bove and Capretta, 2007]
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PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
IDEA: SYNTHETIC TAIT COMPUTABILITY

Given a lex functor
ρ : T → Set

we can extend along the Yoneda embedding

T̂ Set

T

ρ̂

ρ

and use the internal language of the Artin gluing

Set ↓ ρ̂

to prove statements about objects ρ(X) [Sterling, 2021].
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PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
INGREDIENTS

▶ Standard model
J−KSet : T → Set, JNKSet = N.

▶ Model
J−KR : T → R

in a topos where
R(JNKR, JNKR)

are exactly the primitive recursive functions N → N.
▶ Model

J−KSet↓ρ̂ : T → Set ↓ ρ̂

with
ρ(X) = Γ(JXKR)× JXKSet.

▶ Canonicity:
N ∼= Γ(N)
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PROOF OF CONSERVATIVITY BY LOGICAL RELATIONS
EXTERNALISATION

Any term
n : N ⊢ f (n) : N

of T is interpreted in Set ↓ ρ̂ as

N ∼= Γ(N) Γ(N) ∼= N

N× N ∼= ρ(N) ρ(N) ∼= N× N.

Γ(f )

Jf KSet↓ρ̂∆N ∆N

Γ(Ĵf KR)×Ĵf KSet

Since Ĵf KR is primitive recursive, so is Jf KSet.
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QUESTIONS?

Thank you!

Slides & Draft: jsvb.xyz
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