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Contents of this talk

The contents of this talk are mostly based on the preprint Examples and
cofibrant generation of effective Kan fibration in simplicial sets,
arXiv2402.10568, written together with Freek Geerligs.

The other main source is the book written together with Eric Faber:
Effective Kan fibration in simplicial sets, Springer, 2022.
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Effective Kan 
Fibrations 
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Sets

Starting point is Voevodsky’s construction of a model of HoTT/UF in
simplicial sets.
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The simplicial sets model

Theorem (Voevodsky)

The category of simplicial sets carries a model of type theory in which the
univalence axiom holds.

This results builds on:

Theorem (Kan-Quillen)

The category of simplicial sets carries a model structure.

Voevodsky uses the fibrations of this model structure, the Kan fibrations,
to interpret the dependent types.

Voevodsky’s proof uses both classical logic and choice (as does the
traditional proof of the existence of the Kan-Quillen model structure).

Can this be avoided?
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Simplicial sets: the basics
Simplicial sets are presheaves on the simplex category ∆. This category
has as:

Objects: For each natural number n the set

[n] = {0, 1, . . . , n},

thought of as non-empty linearly ordered set.

Morphisms: Monotone maps.

For each n ∈ N, 0 ≤ i ≤ n, we have a face map

di : [n]→ [n + 1],

the injective map which omits i , and a degeneracy map

si : [n + 1]→ [n],

the surjective map which repeats i .

Every map in ∆ can be written as a composition of face and degeneracy
maps.
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Simplicial sets: the basics, continued

We write
∆n := y [n]

for the representable presheaf on [n] and we refer to ∆n as the
n-simplex.

Subobjects of ∆n (also known as sieves) correspond to subcomplexes
of the n-simplex.

Among the sieves are the horns which miss the interior and one face.
The horn on ∆n which misses the face opposite the kth vertex is
written Λn

k .

Definition (cofibrant sieve)

A sieve S will be called cofibrant if it is pointwise decidable: so if S ⊆ ∆n,
we can decide for any map α : [m]→ [n] whether it belongs to S or not.

In a constructive context it is the cofibrant sieves which really correspond
to subcomplexes.
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Kan fibrations

The fibrations in the Kan-Quillen model structure are the Kan fibrations.

Definition (Kan fibration)

A map f : Y → X of simplicial sets is a Kan fibration if every solid
commutative square

Λn
k Y

∆n X

f

has a (not necessarily unique) dotted filler as shown. The object Y is a
Kan complex if Y → 1 is a Kan fibration.

In classical maths being a Kan fibration is understood as a property.
However, let us say that a map f : Y → X is a structured Kan fibration if
it comes equipped with an explicit choice of lifts for any commutative
square as the one above.
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What is your constructive problem?

Recall that the Kan fibrations interpret the dependent types, while the
Kan complexes interpret the types.

Theorem (Bezem-Coquand-Parmann)

The classical result which says that AB is a Kan complex whenever A and
B are, does not hold constructively.

I refer to this as the BCP-obstruction.

Note that:

The classical proof says that AB is Kan whenever A is.

We also cannot constructively shown that AB is a structured Kan
complex whenever A and B are. (Parmann)

What should we do now?
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Responses

I am aware of three possible responses:

1 Go cubical!

2 Bite the bullet!

3 The definition of a Kan fibration is wrong (constructively)!

In more detail:

1 Switch to cubical sets and add uniformity conditions. This leads to
models of homotopy type theory → see also Evan Cavallo’s
HoTTEST talk from last week.

2 Henry has shown that the existence of the Kan-Quillen model
structure can be shown constructively (where the fibrations are
understood to be structured Kan fibrations). This leads almost to a
model of HoTT (see work with Gambino, Sattler and Szumilo).

3 This is what I have been trying to do with the theory of effective Kan
fibrations. Precursor: the uniform Kan fibrations defined by Gambino
and Sattler.
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Maps structured Kan fibrations lift against
If f lifts against g , then f also lifts against any pushout of g .

• • •

• • •
g f

p

If f lifts against g and h, then f also lifts against h ◦ g .

• •

•

• •

g

f

h

A sequence S0 ⊆ S1 ⊆ . . . ⊆ Sk of cofibrant sieves on ∆n where each
Si ⊆ Si+1 is a pushout of a horn inclusion will be called a horn pushout
sequence. We conclude: each structured Kan fibration has induced lifts
against inclusions S ⊆ T of cofibrant sieves if S and T are given as the
endpoints of a horn pushout sequence.
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Effective Kan fibrations
What happens if we pull back a horn inclusion along a degeneracy?

S Λn
k

∆n+1 ∆nsi

y

The inclusion S ⊆ ∆n+1 can be written as the composition of a horn
pushout sequence. This decomposition is not unique; however, the induced
lift against any structured Kan fibration will be.

Definition (effective Kan fibration)

A structured Kan fibration f : Y → X is an effective Kan fibration if its
induced lifts make any diagram of the following form commute:

S Λn
k Y

∆n+1 ∆n X

f

si

y
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Properties of effective Kan fibrations
We have established the following properties of effective Kan fibrations:

Classical correctness: Using classical logic and choice, one can show that
every Kan fibration can be equipped with the structure of an
effective Kan fibration (jww Eric Faber).

Exponentials: If A is an effective Kan complex, then so is AB for any
simplicial set B. More generally, effective Kan fibrations are
closed under Π (jww Eric Faber).

Other type constructors: Effective Kan fibrations interpret the following
type constructors: Π,Σ,+,×, 0, 1,N. We have a slightly
ineffective proof for W as well (jww Shinichiro Tanaka).

Other examples: Simplicial groups (more generally, simplicial Malcev
algebras) are Kan (jww Freek Geerligs).

A big open problem

We can construct universes using the Hofmann-Streicher construction.
However, I do not know if they are effectively Kan or satisfy univalence.
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Double categories
The definition of an effective Kan fibration can be phrased in the language
of double categories.

Definition (double category)

A double category consists of:

Objects.

Horizontal arrows • • between these objects.

Vertical arrows
•

•

between these objects.

Squares
• •

• •

which can be composed horizontally and vertically.

Example

If C is a category, then there is a double category Sq(C) whose horizontal
and vertical arrows are the morphisms of C, while its squares are the
commutative squares in C.
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Lifting against double categories
Let L be a double category and L : L→ Sq(C) be a double functor. If
f : Y → X is a morphism in C, then a right lifting structure against L is a
function which assigns to each vertical morphism g in L and each square
(u, v) : Lg → f in Sq(C) a lift φ = φg (u, v) as shown:

• •

• •

u

Lg f

v

φ

These lifts are required to satisfy two compatibility conditions, a horizontal
and a vertical one, which can be depicted as follows:

• • •

• • •
Lg ′

u

Lg f

v

• •

•

• •

u

Lg

f

Lh

v
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A double category for effective Kan fibrations
Let L0 be the following double category:

Objects are cofibrant sieves S ⊆ ∆n.

Horizontal morphisms are pullback squares
S T

∆n ∆mα

.

Vertical morphisms are horn pushout sequences S0 ⊆ S1 ⊆ . . . ⊆ Sk .

A square from S0 ⊆ S1 ⊆ . . . ⊆ Sk ⊆ ∆n to
T0 ⊆ T1 ⊆ . . . ⊆ Tl ⊆ ∆m is given by a map α : ∆n → ∆m and a
monotone function f : {0, . . . , l} → {0, . . . ,m} such that
f (0) = 0, f (l) = k and α∗Ti = Sf (i). Such a square is a face or
degeneracy square if α is a face or degeneracy map.

The double category L is defined in the same way, but each square is an
explicit composition of face and degeneracy squares.

Theorem (Freek Geerligs & BvdB)

A map is an effective Kan fibration iff it has a right lifting structure
against the double category L.
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Algebraic weak factorisation systems

Theorem (Freek Geerligs & BvdB)

A map is an effective Kan fibration iff it has a right lifting structure
against the double category L.

Theorem (Bourke & Garner)

If L : L→ Sq(Ĉ) is a double functor from a small double category, then
the maps having the right lifting structure against L are the right maps in
an algebraic weak factorisation system (AWFS).

The proof given by Bourke and Garner is classical; however, I am
convinced that it can be made constructive in the case at hand (joint work
in progress with Paul Seip and John Bourke).

Ultimately I hope the effective Kan fibrations can be the fibrations in an
algebraic model structure (constructively!).
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Caveats
The following caveats are in order:

The definition of an algebraic model structure proposed by Riehl is
somewhat weak.

I don’t expect effective Kan fibrations to be closed under retracts
(constructively!).

The idea is that the dependent types in the model of type theory will be
interpreted by the effective Kan fibrations; the fibrations in the model
structure will be their retracts.

This may sound a bit wacky, but note that the split fibrations interpret the
dependent types in the groupoid model of Hoffmann & Streicher. These
are not closed under retracts (they are, however, the right class in an
AWFS). Of course, the fibrations in the model structure on groupoids are
general (not necessarily split) fibrations of groupoids.

If the whole project can be brought to a successful conclusion the picture
for simplicial sets will be similar (at least for the constructivist!).
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Thank you!
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