Framework: Yoneda structures

A formal framework for univalent completions

Kobe Wullaert

Delft University of Technology, The Netherlands HoTT/UF 2024

Introduction

Univalence principle

For mathematical objects:

- equipped with a notion of "sameness"
- easoning invariant

Univalence principle for categories (AKS)

Univalence axiom \Rightarrow univalent categories are necessarily invariant under weak equivalences.

Problem

What about categories with "structure"?

Enc 00

1 Univalent categories

2 Framework: Yoneda structures

3 Interpretation

Categories in HoTT/UF

Univalent categories (AKS)

A category X is *univalent* if

$$\mathsf{idtoiso}_{x, y} : (x =_{ob(X)} y) \to (x \cong_X y),$$

is an equivalence of types.

Examples

You know this, hopefully!

However, not every *classical* construction is closed under univalence, such as Kleisli categories constructed via Kleisli morphisms (even if the underlying category is univalent). A process to turn a non-univalent category into a univalent one:

Rezk completion (AKS)

The Rezk completion of a category: "free univalent" category, i. e. , Cat_{univ} \hookrightarrow Cat has a left 2-adjoint.

Construction (AKS)

Concretely, the Rezk completion of a category is constructed as the full subcategory of *representable* presheaves.

Weak equivalences: sameness for categories (AKS)

Definition

A weak equivalence is a functor $f : X \rightarrow Y$ such that:

- f is fully faithful
- If is essentially surjective

Theorem

If $f: X \to Y$ is a weak equivalence, and Y is univalent, then Y satisfies the universal property of the Rezk completion

Corollary

A category X is univalent if and only for any weak equivalence $f : A \rightarrow B$, the precomposition functor Cat(f, X) is an isomorphism of categories.

Examples

Enriched categories (vdW)

- (definition) categories equipped with "hom-objects";
- (weak equivalence) an underlying weak equivalence does not suffice.

Monoidal categories (WMA)

- (definition) categories equipped with a "monoid structure";
- (weak equivalence) the underlying functor is a weak equivalence.

Construction of the Rezk completion

The Rezk completion of monoidal, resp. enriched, categories, is constructed as via presheaves.

Goal

Goal

Find a "unifying" theory behind these examples \rightsquigarrow illuminate and to extend the theory of *univalent categories* in homotopy type theory.

How? \rightsquigarrow apply category theory to itself.

Exercise 9.5 (HoTT book)

How much of this chapter can be done internally to an arbitrary 2-category?

End 00

1 Univalent categories

2 Framework: Yoneda structures

3 Interpretation

Ingredients

- univalent objects
- weak equivalences (eso + ff)
- Rezk objects

Goal

Determine sufficient (*n*-dimensional) structure on a bicategory B, to suitably interpret the above ingredients, and their relations.

Yoneda approach (Street, Walters)

Presheaf objects suffice! \rightsquigarrow Why? Any(_)*thing* is an extension.

Yoneda structure (SW)

A Yoneda structure consists of (modulo admissibility):

Structure/Data

A **presheaf object** for X : B consists of the following structure:

- an object $\mathbb{P}X$ of presheaves (*presheaf object*);
- **2** a morphism $\sharp_X : X \to \mathbb{P}X$ (Yoneda morphism).

Furthermore, the following statements have a witness:

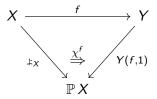
Axioms/Laws

- for every $f: X \to Y$, there is given a *left extension* $(Y(f, 1), \chi^f)$ of \sharp_X along f;
- each 2-cell χ^f exhibits f as an absolute left lifting of *k*_X through Y(f, 1).

chi

Framework: Yoneda structures

Let $f: X \to Y$.



End

Yoneda structure: ExNat precomp

Idea

every morphism is uniquely determined by its action on "generalized objects" and "generalized morphisms" respectively.

The idea is made formal by the following construction, due to Street and Walters.

Construction

Every precomposition functor B(f, Z) factors through a displayed category over the target (hom-)category, denoted ExNat(f, Z):

$$ExNat(f, Z)$$

$$\downarrow^{(f \cdot e^{-})} \qquad \qquad \downarrow^{\pi_1}$$

$$B(Y, Z) \xrightarrow{(f \cdot -)} B(X, Z)$$

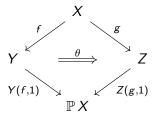
Univalent categories	Framework: Yoneda structures	Interpretation	End
000000	00000●	000000	00
. <u></u>			

Let $f: X \to Y$ be a morphism and Z an object. Then

$$ExNat(f, Z) := \int_{g: X \to Z} Mon(f, g)$$

where Mon(f, g) consists of (suitable) 2-cells:

Exnat



1 Univalent categories

2 Framework: Yoneda structures

Interpretation: univalent objects

Definition

An object Z is *univalent* if $E \times Nat(f, Z)$ is univalent (as a category) for all $f : X \to Y$.

Proposition

If Z is univalent, then hom(X, Z) is univalent (for all X).

Conversely:

Proposition

If $\mathbb{P}X$ is hom-wise univalent, then ExNat(f, Z) is displayed univalent over B(X, Z). Hence, if Z is hom-wise univalent, then Z is univalent.

Definition (SW)

A morphism $f : X \to Y$ is fully faithful if

$$\chi^f: X(1,1) \Rightarrow Y(f,f),$$

is invertible.

Lemma

f is fully faithful if and only if for all Z,

$$\pi_1: ExNat(f, Z) \rightarrow B(X, Z),$$

is a (weak) equivalence of categories.

Interpretation: essentially surjective

Definition

A morphism $f: X \to Y$ is essentially surjective if for all univalent objects Z,

$$(f \cdot_Z^e -) : \mathsf{B}(Y, Z) \to \mathsf{ExNat}(f, Z),$$

is a weak equivalence of categories.

Remark

If we remove the univalence requirement, we recover those morphisms which are "equivalent on objects".

Conjecture

The essentially surjective morphisms are left orthogonal to those morphisms which are fully faithful and "univalence reflecting/amnestic".

Weak equivalences

Definition

A morphism $f : X \to Y$ is a weak equivalence if f is fully faithful and essentially surjective.

Theorem

Let $f : X \to Y$ be a weak equivalence, then:

```
    for any univalent object Z,
```

```
(f \cdot -) : \mathsf{B}(Y, Z) \to \mathsf{B}(X, Z),
```

is an isomorphism of categories;

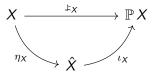
if X is univalent, then f is an isomorphism (homwise).

Framework: Yoneda structures

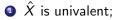
End

Rezk completion: construction

Let X be an object. Assume $\sharp_X : X \to \mathbb{P}X$ factors as:



where



- 2 η_X is essentially surjective;
- ι_X is fully faithful;

Theorem

If $\mathbb{P} X$ is univalent, then (\hat{X}, η_X) is the Rezk completion for X.

Future work

- admissibility (representability);
- univalent displayed bicategories (e.g., pseudomonoids);
- oreflective subbicategories (internal co-completions/exactness);
- Kleisli objects;
- internal logic (relative to presheaves);
- Rezk completion of bicategories.

Conclusion

Conclusion

Yoneda structures are (almost) sufficient to interpret the "univalent category theory".

Informal conclusion

Presheaves for the win!