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Introduction

Consider a puzzle about sorting, inspired by Dijkstra’s Dutch National Flag

problem. Suppose there are balls of three colors, corresponding to the colors of

the Dutch flag: red, white, and blue.

{ , , }

Given an unordered list of such balls, how many ways can you sort them into the

Dutch flag?

{ , , , , , , , }

Obviously there is only one way, which is given by the order red < white < blue.

[ , , , , , , , ]
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Introduction

What if we are avid enjoyers of vexillology who also want to consider other flags?

We might ask: how many ways can we sort our bag of balls?

We know that there are only 3! = 6 permutations of {red,white, blue}, so there

are only 6 possible orderings we can define. 1

We claim because there are exactly 6 orderings, we can only define 6 correct

sorting functions.

1I have no allegiance to any of the countries presented by the flags, hypothetical or otherwise – this is purely

combinatorics!
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Motivation

Sort functions are subset of functions from unordered lists to lists:

1. Formalize what UnorderedList(A) and List(A) are.

2. Nail down what the subset Sort(A) is.

3. Construct a full equivalence Sort(A) ≃ Ord(A).

• We use category theory and type theory.

• Categorical language is used to describe the universal properties of free

algebras.

• Type theory is used to construct free algebras.

The formalization is done in Cubical Agda.
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Universal Algebra

A signature σ is:

• a set of function symbols op : hSet

• an arity function ar : op → hSet

This gives a signature endofunctor Fσ(X ) :=
∑

f :op X
ar(f )

A σ-structure is a Fσ-algebra:

• a carrier set X : hSet

• an interpretation function: αX : Fσ(X ) → X

A σ-algebra homomorphism h : X → Y is a function such that:

Fσ(X ) X

Fσ(Y ) Y

αX

Fσ(h)

αY

h

Fσ-algebras and their morphisms form a category σ-Alg.

Example: The signature σMon has: op : hSet = {e, •} (or Fin2 or 2),

ar : σ → hSet = {e 7→ 0, , • 7→ 2}
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Free Algebras

The free σ-algebra F(X ) on a carrier set X , if it exists, produces a left adjoint to

the forgetful functor σ-Alg to hSet, given by:

• a type constructor F : hSet → hSet,

• a universal generators map ηX : X → F (X ), such that

• for any σ-algebra Y, post-composition with ηX is an equivalence.

(F(X )
f−−→ Y) 7→ (X

ηV−−→ F (X )
f−−→ Y )

• The inverse of the equivalence is the extension operation

(−)♯ : (X → Y ) → (F(X ) → Y).
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Free Algebras

We define the carrier set using an inductive type of trees Trσ(V ), generated by

two constructors:

• leaf : V → Trσ(V ), and

• node : Fσ(Trσ(V )) → Trσ(V ).

Expanding node: (f : op)× (ch : ar(f ) → Trσ(V )) → Trσ(V ).

node is our algebra map α : Fσ(Trσ(V )) → Trσ(V ).

leaf is our generators map η : V → Trσ(V ).

This gives a σ-algebra T(V ) = (Trσ(V ), node).

Theorem

T(V ) is the free σ-algebra on V .
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Free Algebras

Trσ(V ) can be represented by the W-type:

• the shape S : U given by V + opσ,

• the family of positions P : S → U given by {inl(v) 7→ ⊥, inr(v) 7→ arσ}.

Trees for σMon with the carrier set N would look like:

2 1 1

+

+

2 1 1

+

+

These trees should be equivalent by associativity since they are trees of a

monoid...
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Universal Algebra

So far there are no laws! How do we add laws?

Definition

An equational signature ε is given by:

• a set of equation symbols eq : hSet,

• an arity of free variables fv : eq → hSet

A system of equations (or equational theory Tε) is a pair of natural

transformations: l , r : Fε ⇒ Trσ.

X satisfies T (X ⊨ T ) if for every assignment ρ : V → X , ρ♯ coequalizes lV , rV :

Fε(V ) Trσ(V ) X
ρ♯

lV

rV
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Universal Algebra

Example: N is a (lawful) monoid.

The equational signature σMon has:

• the set of equation symbols eq = {unitl, unitr, assocr} (or Fin3 or 3),

• the arity function fv : eq → hSet = {unitl 7→ 1, unitr 7→ 1, assocr 7→ 3}.

To show (N, 0,+) ⊨ Mon:

unitl : ∀(ρ : NFin1). ρ(0) + 0 = ρ(0)

unitr : ∀(ρ : NFin1). 0 + ρ(0) = ρ(0)

assocr : ∀(ρ : NFin3). (ρ(0) + ρ(1)) + ρ(2) = ρ(0) + (ρ(1) + ρ(2))

The σ-algebras satisfying a theory Tε form a subcategory (σ, ε)-Alg (or a variety

of algebras).

Definition

A (σ, ε)-algebra F(V ) is free if post-composition with ηX is an equivalence:

(−) ◦ ηX : (σ, ε) -Alg(F(V ),X)
∼−−→ (V → X ).
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Universal Algebra

In this talk, we only consider the construction of free objects for the special case

of monoids and commutative monoids.

But can we construct any arbitrary free algebras?

We need choice to handle infinitary operations2, and also avoid strict positivity

checking.

We didn’t investigate further, but it should be possible to construct arbitrary free

algebras in Cubical Agda.

2Blass, “Words, free algebras, and coequalizers”.
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Constructions of free (commutative) monoids

It’s well known that Lists are free monoids3:

We can turn it into a free commutative monoid by either adding a path

constructor4 or by set quotients5:

Swapped cons lists

data SList (A : U) : U where

[] : SList A

_::_ : A → SList A → SList A

swap : ∀ x y xs → x :: y :: xs = y :: x :: xs

trunc : ∀ x y → (p q : x = y) → p = q

Cons lists upto permutation

PList(A) = List(A)/Perm≈

3Dubuc, “Free monoids”; Kelly, “A unified treatment of transfinite constructions for free algebras, free monoids,

colimits, associated sheaves, and so on”.
4Choudhury and Fiore, “Free Commutative Monoids in Homotopy Type Theory”.
5Joram and Veltri, “Constructive Final Semantics of Finite Bags”.

15



Constructions of free (commutative) monoids

Another construction of free monoids is Array:

Array

Array(A) = (n : N)× (f : Finn → A)

We can also turn it into a free commutative monoid by quotienting with

symmetries6:

Bags

Bag(A) = Array(A)/ ≈

(n, f ) ≈ (m, g) = ∃(ϕ : Finn
∼−−→ Finm). f = g ◦ ϕ

6Joram and Veltri, “Constructive Final Semantics of Finite Bags”.
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Constructions of free commutative monoids

Bags

Bag(A) = Array(A)/ ≈

(n, f ) ≈ (m, g) = ∃(ϕ : Finn
∼−−→ Finm). f = g ◦ ϕ

Cons lists quotiented by permutations

PList(A) = List(A)/Perm≈

A free monoid quotiented by a permutation relation must be a free commutative

monoid.

From this, a relation ≈ is a correct permutation relation iff it:

• is reflexive, symmetric, transitive (equivalence),

• is a congruence wrt •: a ≈ b → c ≈ d → a • c ≈ b • d ,
• is commutative: a • b ≈ b • a, and
• respects (−)♯: ∀f . a ≈ b → f ♯(a) = f ♯(b).
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Constructions of free commutative monoids

Bags

Bag(A) = Array(A)/ ≈

(n, f ) ≈ (m, g) = ∃(ϕ : Finn
∼−−→ Finm). f = g ◦ ϕ

How to show ≈ respects commutativity: a • b ≈ b • a?

Let a = (n, f ) and b = (m, g), we need to compute an isomorphism

ϕ : Finn+m
∼−−→ Finm+n, such that: (f ⊕ g) = (g ⊕ f ) ◦ ϕ. Define,

ϕ := Finn+m
∼−−→ Finn + Finm

swap+−−−→ Finm + Finn
∼−−→ Finm+n

{0, 1, . . . , n − 1, n, n + 1, . . . , n +m − 1}

{n, n + 1 . . . , n +m − 1, 0, 1, . . . , n − 1}

ϕ
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Constructions of free commutative monoids

Bags

Bag(A) = Array(A)/ ≈

(n, f ) ≈ (m, g) = ∃(ϕ : Finn
∼−−→ Finm). f = g ◦ ϕ

How to show ≈ respects (−)♯: ∀f . a ≈ b → f ♯(a) = f ♯(b)?

We can prove this by showing f ♯ is invariant under permutation: for all

ϕ : Finn
∼−−→ Finn, f

♯(n, i) = f ♯(n, i ◦ ϕ).
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Constructions of free commutative monoids

W.T.S. for all ϕ : Finn
∼−−→ Finn f ♯(n, i) = f ♯(n, i ◦ ϕ).

• The image of f ♯ is a commutative monoid, so permuting the array’s

elements should not affect anything

• But how do we actually prove this?

• If ϕ(0) = 0, we can prove this by induction:

Theorem

Given τ : FinS(n)
∼−−→ FinS(n) where τ(0) = 0, there is a ψ : Finn

∼−−→ Finn

such that τ ◦ S = S ◦ ψ.

{0, 1, 2, 3, . . .}

{0, x , y , z . . .}

τ

{0, 1, 2, . . .}

{x − 1, y − 1, z − 1 . . .}

ψ

This is a special case of punchIn and punchOut, where k = 0.
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Constructions of free commutative monoids

W.T.S. for all ϕ : Finn
∼−−→ Finn. f

♯(n, i) = f ♯(n, i ◦ ϕ).

Theorem

Given ϕ : FinS(n)
∼−−→ FinS(n), there is a τ : FinS(n)

∼−−→ FinS(n) such that

τ(0) = 0, and f ♯(S(n), i ◦ ϕ) = f ♯(S(n), i ◦ τ).

Let k be ϕ−1(0):

{0, 1, 2, . . . , k, k + 1, k + 2, . . .}

{x , y , z , . . . , 0, u, v , . . .}

ϕ

{0, 1, 2, . . . , k, k + 1, k + 2, . . .}

{0, u, v , . . . , x , y , z , . . .}

τ
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Arrays quotiented by symmetries

W.T.S. for all ϕ : Finn
∼−−→ Finn. f

♯(n, i) = f ♯(n, i ◦ ϕ).

Theorem

For all ϕ : Finn
∼−−→ Finn. f

♯(n, i) = f ♯(n, i ◦ ϕ).

f ♯(S(n), i ◦ ϕ)

= f ♯(S(n), i ◦ τ)

= f (i(0)) • f ♯(n, i ◦ ψ)

= f (i(0)) • f ♯(n, i) (induction)

= f ♯(S(n), i)

Bag satisfies the universal property of free commutative monoids!
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List vs SList

Any presentation of free monoids or free commutative monoids has a:

• length : F(A) → Nat function, given by (λx . 1)♯

• a membership predicate: _∈_ : A → F(A) → hProp.

Assuming A is a set, and x : A, we defineよA(y) = x = y : A → hProp.

x ∈ − is given byよA
♯
!
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List vs SList

Consider the head : List A → A function.

Can we define head for both Lists and SLists?

We consider by cases on the length of the List/SList.

• For empty (s)lists, head doesn’t exist (e.g. consider A = 0).

• For singleton (s)lists, head is an equivalence (injectivity of η).

• For lists of length ≥ 2, we can just take the first element.

For slists of length ≥ 2, by swap:

{x,y} = {y,x}

head({x,y}) = head({y,x})

Which one do we pick? Commutativity enforce unorderedness!
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List vs SList

Let L(A) be the free monoid, and M(A) the free commutative monoid on A.

L(A) M(A)
s

q

q is the canonical map (surjection) from L(A) to M(A) (given by extending

ηMA ).

Question

Without choice axioms, constructively, does q have a section?

To give a section is to turn an unordered list into an ordered list. How should s

order the elements? By sorting! (which requires a total order on A. . . )

We will show that sorting can be axiomatized from this point of view.
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Sorting

Informally, we prove:

1. if A has a decidable total order, there is a well-behaved section.

2. if there is a well-behaved section, A is totally ordered.

This well-behaved section gives a correct sort function!

Axioms of total order:

• reflexivity: x ≤ x

• transitivity: if x ≤ y and y ≤ z , then x ≤ z

• antisymmetry: if x ≤ y and y ≤ x , then x = y

• totality: forall x and y , we have merely either x ≤ y or y ≤ x

Proposition

Assume there is a decidable total order on A. There is a sort function

s : M(A) → L(A) which constructs a section to q : L(A) ↠ M(A).

We can construct a section s by any sorting algorithm, we chose insertion sort.
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Sorting

To go the other way, given a section s, we can construct a relation that satisfies

reflexivity, antisymmetry, and totality!

Definition

Given a section s, define:

least(xs) := head(s(xs))

x ⪯ y := least({x , y}) = x

We prove:

• reflexivity: x ⪯ x :

least({x , x})) must be x.

• antisymmetry: if x ⪯ y and y ⪯ x , then x = y :

x = least({x , y}) = y

• totality: for all x and y , either x ⪯ y or y ⪯ x :

least({x , y}) is merely either x or y .

But what about transitivity?
28



Sorting

Consider this section s : SList(N) → List(N):

s(xs) =

sort(xs) if length(xs) is odd

reverse(sort(xs)) otherwise

s({2, 3, 1, 4}) = [4, 3, 2, 1]

s({2, 3, 1}) = [1, 2, 3]

s doesn’t sort and violates transitivity!

A correct sort function needs more constraints . . .
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Correctness of Sorting

Given a section s:

is-sorted

A list xs is sorted if ∃ys. s(ys) = xs.

is-head-least

s satisfies is-head-least if

∀x xs. is-sorted(x :: xs) ∧ y ∈ (x :: xs) → is-sorted([x , y ]).

Lemma

is-head-least is equivalent to transitivity of ⪯.

Corollary

If s satisfies is-head-list, then ⪯ is a total order on A.
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Axiomatics of Sorting

Next step: we want to upgrade this proof to an equivalence between total orders

on A, and well-behaved sections s.

Given a decidable total order ≤, we use it to construct a sort function (e.g.

insertion sort). Insertion sort satisfies is-head-least, and we use it to construct a

total order ⪯.

Question

• Is ⪯=≤?

• If we use s to construct ⪯, can we reconstruct s from ⪯?

As it turns out, is-head-least is not enough to axiomatize sorting functions!
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Axiomatics of Sorting

If we use s to construct ⪯, can we reconstruct s from ⪯?

Let sort be insertion sort by ⪯. Consider this section s : SList(N) → List(N):

s(xs) = least(xs) :: reverse(tail(sort(xs)))

s({2, 3, 1, 4}) = [1, 4, 3, 2]

s({2, 3, 1}) = [1, 3, 2]

s is not the same as insertion sort, but both give us the same ⪯!

We need another constraint:

is-tail-sort

A section s satisfies is-tail-sort if:

∀x xs. is-sorted(x :: xs) → is-sorted(xs).
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Main Result

Our final theorem:

Definition

• DecTotOrd(A) = decidable total orders on A

• Sort(A) = sections s : M(A) → L(A) to q, satisfying is-head-least

and is-tail-sort, where A has decidable equality

Theorem

o2s : DecTotOrd(A) → Sort(A) is an equivalence.

There is a decidable total order on A iff A has decidable equality and a section

satisfying is-head-least and is-tail-sort!
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Main Result

Theorem

o2s : DecTotOrd(A) → Sort(A) is an equivalence.

Given DecTotOrd(A):

• We can construct a section s : M(A) → L(A) with insertion sort, which

satisfies is-head-least and is-tail-sort

• We can show A has decidable equality by determining if x ≤ y and y ≤ x ,

antisymmetry gives us x = y if x ≤ y and y ≤ x

Given Sort(A):

• We can construct a total order x ⪯ y := least({x , y}) = x as shown

previously

• Because A has decidable equality, we can determine least({x , y}) = x , so ⪯
is decidable
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Main Result

DecTotOrd(A)
o2s−−→ Sort(A)

o2s−1

−−−→ DecTotOrd(A)

• least({x , y}) = x iff x ≤ y

Sort(A)
o2s−1

−−−→ DecTotOrd(A)
o2s−−→ Sort(A)

• Given a section s that satisfies is-head-least and is-tail-sort, s is equal to

insertion sort with the order ⪯ generated by s.

• is-head-least lets us create the total order ⪯.

Definition

We define a witness for sorted lists:

data Sorted (≤ : A → A → U) : List A → U where

sorted-[] : Sorted []

sorted-one : ∀ x → Sorted [ x ]

sorted-:: : ∀ x y zs → x ≤ y → Sorted (y :: zs)

→ Sorted (x :: y :: zs)

• is-tail-sort lets us inductively prove ∀xs. Sorted⪯(s(xs))
• Both s and insertion sort produce lists sorted by ⪯, and they’re the same!
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Main Result

Question

What is a correct sorting algorithm?

Answer

A sort function is a section s : M(A) → L(A) to the canonical map

q : L(A) ↠ M(A), satisfying:

• is-head-least:

∀x xs. is-sorted(x :: xs) ∧ y ∈ (x :: xs) → is-sorted([x , y ]),

• is-tail-sort: ∀x xs. is-sorted(x :: xs) → is-sorted(xs).

where xs is-sorted if it is in the truncated fiber of s.
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Main Result

Remarks

• Other specifications of sorting (in Coq, or the VFA livre) are given

in terms of sort : List Nat → List Nat.

• These are special cases of our axiomatic understanding of sorting!

As a sanity check for our axioms, we can see how Sorted from VFA relates to

our axioms.

Let OL(A) = Σxs:L(A)Sorted≤(xs):

L(A) OL(A)

M(A)

sort

q q◦π1

We set sort to (s ◦ q, p ◦ q), where p is the proof ∀xs. Sorted⪯(s(xs))
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Conclusion

We developed new axiomitizations for sort functions by showing the

correspondence between:

• sort functions

• well behaved sections

• decidable total orders

Future works:

• Are all sections defined in terms of well-behaved sections?

• Does the existence of a section M(A) → L(A) imply a total order on A?

• Generalize the universal algebra framework from sets to groupoids.

• How to define system of coherences?
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Thank you!
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