Internal and Observational Parametricity for Cubical Agda

Antoine Van Muylder ${ }^{1} \quad$ Andreas Nuyts ${ }^{1} \quad$ Dominique Devriese ${ }^{1}$
${ }^{1}$ KU Leuven
HoTT/UF 24
4 Apr 2024

Question

Best way to provide free theorems to the proof assistant user?

A free theorem

Conjecture (normal DTT)

$$
\begin{gathered}
p:(X: \text { Type }) \rightarrow X \rightarrow X \rightarrow X \\
\text { then } \\
p \equiv \lambda X \times y \cdot x
\end{gathered} \quad \text { OR } \quad p \equiv \lambda X \times y \cdot y .
$$

A free theorem

Conjecture (normal DTT)

$$
\begin{gathered}
p:(X: \text { Type }) \rightarrow X \rightarrow X \rightarrow X \\
\text { then } \\
p \equiv \lambda X \times y \cdot x
\end{gathered} \quad \text { OR } \quad p \equiv \lambda X \times y \cdot y .
$$

Intuition

- p can not case on X : Type
- i.e. p is "parametric"

Defining parametricity

[Reynolds 1983] gived us a definition
p is parametric
\Longleftrightarrow

- p preserves logical relations

Defining parametricity

[Reynolds 1983] gived us a definition
p is parametric
\Longleftrightarrow

- p preserves logical relations
- i.e. p preserves structure-compatible relations

Defining parametricity

[Reynolds 1983] gived us a definition
p is parametric
\Longleftrightarrow

- p preserves logical relations
- i.e. p preserves structure-compatible relations
for $p:(X:$ Type $) \rightarrow X \rightarrow X \rightarrow X$ this unfolds to

Defining parametricity

[Reynolds 1983] gived us a definition
p is parametric
\Longleftrightarrow

- p preserves logical relations
- i.e. p preserves structure-compatible relations
for $p:(X:$ Type $) \rightarrow X \rightarrow X \rightarrow X$ this unfolds to
- $\left(R: X_{0} \rightarrow X_{1} \rightarrow\right.$ Type $) \rightarrow$

Defining parametricity

[Reynolds 1983] gived us a definition
p is parametric
\Longleftrightarrow

- p preserves logical relations
- i.e. p preserves structure-compatible relations
for $p:(X:$ Type $) \rightarrow X \rightarrow X \rightarrow X$ this unfolds to
- $\left(R: X_{0} \rightarrow X_{1} \rightarrow\right.$ Type $) \rightarrow$
- $x 0, x 1$ such that $R x_{0} x_{1} \rightarrow y_{0} y_{1}$ such that $R y_{0} y_{1} \rightarrow$

Defining parametricity

[Reynolds 1983] gived us a definition
p is parametric
\Longleftrightarrow

- p preserves logical relations
- i.e. p preserves structure-compatible relations
for $p:(X:$ Type $) \rightarrow X \rightarrow X \rightarrow X$ this unfolds to
- $\left(R: X_{0} \rightarrow X_{1} \rightarrow\right.$ Type $) \rightarrow$
- $x 0, x 1$ such that $R x_{0} x_{1} \rightarrow y_{0} y_{1}$ such that $R y_{0} y_{1} \rightarrow$
- $R\left(p X_{0} x_{0} y_{0}\right)\left(p X_{1} x_{1} y_{1}\right)$

Defining parametricity

[Reynolds 1983] gived us a definition
p is parametric
\Longleftrightarrow

- p preserves logical relations
- i.e. p preserves structure-compatible relations
for $p:(X:$ Type $) \rightarrow X \rightarrow X \rightarrow X$ this unfolds to
- $\left(R: X_{0} \rightarrow X_{1} \rightarrow\right.$ Type $) \rightarrow$
- $x 0, x 1$ such that $R x_{0} x_{1} \rightarrow y_{0} y_{1}$ such that $R y_{0} y_{1} \rightarrow$
- $R\left(p X_{0} x_{0} y_{0}\right)\left(p X_{1} x_{1} y_{1}\right)$
- fact: p param. $\Longrightarrow(p \equiv \lambda X x y \cdot x \quad$ OR $p \equiv \lambda X x y \cdot y)$

2 solutions

Q: Bring free theorems to proof assistants?

A1:
Parametricity translations (only alluded to)

As we will see, A1 \& A2 offer opposite tradeoffs

Internally parametric DTTs. What?

- Introduced in [Moulin 2016]

Internally parametric DTTs. What?

- Introduced in [Moulin 2016]
- Extension of standard DTT (new types, terms, equations)

$$
\frac{A: \text { Type } \quad a_{0}, a_{1}: A}{\text { Bridge }_{A} a_{0} a_{1}: \text { Type }}
$$

Bridges are synthetic log. relations Paths are synthetic isomorphisms

$$
\begin{aligned}
& \bar{M}: \text { Bridge }_{\text {Mon }} M_{0} M_{1} \\
& \bar{M}: M_{0} \equiv{ }_{\text {Mon }} M_{1}
\end{aligned}
$$

Internally parametric DTTs. What?

- Introduced in [Moulin 2016]
- Extension of standard DTT (new types, terms, equations)

$$
\frac{A: \text { Type } \quad a_{0}, a_{1}: A}{\text { Bridge }_{A} a_{0} a_{1}: \text { Type }}
$$

Bridges are synthetic log. relations Paths are synthetic isomorphisms

$$
\begin{aligned}
& \bar{M}: \text { Bridge }_{\text {Mon }} M_{0} M_{1} \\
& \bar{M}: M_{0} \equiv_{\text {Mon }} M_{1}
\end{aligned}
$$

- In this setting, param. = functions preserve bridges
\vdash intparam : $(p:(a: A) \rightarrow B a) \rightarrow\left(\bar{a}: \operatorname{Bridge}_{A} a_{0} a_{1}\right) \rightarrow \operatorname{BridgeP}_{x . B(\bar{a} \times)}\left(p a_{0}\right)\left(p a_{1}\right)$
$\vdash \operatorname{intparam} p \bar{a}:=\lambda x \cdot p(\bar{a} x)$

Internally parametric DTTs. What?

- Introduced in [Moulin 2016]
- Extension of standard DTT (new types, terms, equations)

$$
\frac{A: \text { Type } \quad a_{0}, a_{1}: A}{\text { Bridge }_{A} a_{0} a_{1}: \text { Type }}
$$

Bridges are synthetic log. relations

$$
\begin{aligned}
& \bar{M}: \text { Bridge }_{\text {Mon }} M_{0} M_{1} \\
& \bar{M}: M_{0} \equiv \text { Mon } M_{1}
\end{aligned}
$$Paths are synthetic isomorphisms

- In this setting, param. = functions preserve bridges
\vdash intparam : $(p:(a: A) \rightarrow B a) \rightarrow\left(\bar{a}:\right.$ Bridge $\left._{A} a_{0} a_{1}\right) \rightarrow \operatorname{BridgeP}_{x \cdot B(\bar{a} \times)}\left(p a_{0}\right)\left(p a_{1}\right)$
\vdash intparam $p \bar{a}:=\lambda x \cdot p(\bar{a} x)$
- (and free theorems can be proved from intparam + other prims)

Internally parametric DTTs. Why?

\vdash intparam : $(p:(a: A) \rightarrow B a) \rightarrow\left(\bar{a}:\right.$ Bridge $\left._{A} a_{0} a_{1}\right) \rightarrow \operatorname{BridgeP}_{x . B(\bar{a} \times)}\left(p f_{0}\right)\left(p f_{1}\right)$
\vdash intparam $:=\lambda p \bar{a} \cdot \lambda x \cdot p(\bar{a} x)$

- Quantification on p is internal to the type theory

Internally parametric DTTs. Why?

\vdash intparam : $(p:(a: A) \rightarrow B a) \rightarrow\left(\bar{a}:\right.$ Bridge $\left._{A} a_{0} a_{1}\right) \rightarrow \operatorname{BridgeP}_{x . B(\bar{a} \times)}\left(p f_{0}\right)\left(p f_{1}\right)$
\vdash intparam $:=\lambda p \bar{a} \cdot \lambda x \cdot p(\bar{a} x)$

- Quantification on p is internal to the type theory
- This allows e.g. \vdash boolChurch : $(\forall X . X \rightarrow X \rightarrow X) \simeq$ Bool

Internally parametric DTTs. Why?

\vdash intparam : $(p:(a: A) \rightarrow B a) \rightarrow\left(\bar{a}:\right.$ Bridge $\left._{A} a_{0} a_{1}\right) \rightarrow \operatorname{BridgeP}_{x . B(\bar{a} \times)}\left(p f_{0}\right)\left(p f_{1}\right)$
\vdash intparam $:=\lambda p \bar{a} \cdot \lambda x \cdot p(\bar{a} x)$

- Quantification on p is internal to the type theory
- This allows e.g. \vdash boolChurch : $(\forall X . X \rightarrow X \rightarrow X) \simeq$ Bool
- not achieved by param. translations

Internally parametric DTTs. Why?

\vdash intparam : $(p:(a: A) \rightarrow B a) \rightarrow\left(\bar{a}:\right.$ Bridge $\left._{A} a_{0} a_{1}\right) \rightarrow \operatorname{BridgeP}_{x . B(\bar{a} \times)}\left(p f_{0}\right)\left(p f_{1}\right)$
\vdash intparam $:=\lambda p \bar{a} \cdot \lambda x \cdot p(\bar{a} x)$

- Quantification on p is internal to the type theory
- This allows e.g. \vdash boolChurch : $(\forall X . X \rightarrow X \rightarrow X) \simeq$ Bool
- not achieved by param. translations

Problem: there are nice systems but no implementations

Internally parametric DTTs. Why?

\vdash intparam : $(p:(a: A) \rightarrow B a) \rightarrow\left(\bar{a}:\right.$ Bridge $\left._{A} a_{0} a_{1}\right) \rightarrow \operatorname{BridgeP}_{x . B(\bar{a} x)}\left(p f_{0}\right)\left(p f_{1}\right)$
\vdash intparam $:=\lambda p \bar{a} \cdot \lambda x \cdot p(\bar{a} x)$

- Quantification on p is internal to the type theory
- This allows e.g. \vdash boolChurch : $(\forall X . X \rightarrow X \rightarrow X) \simeq$ Bool
- not achieved by param. translations

Problem: there are nice systems but no implementations
E.g. [Cavallo \& Harper 2021] (CH):

Internal parametricity for cubical type theory

Contrib. \#1: Agda --bridges

Agda --bridges implements (variant of) CH on top of Agda --cubical

$$
\begin{array}{rll}
\text { HoTT (cart. CTT) } & \longrightarrow \mathrm{CH} \\
\text { Agda --cubical } & \longrightarrow & \text { Agda --bridges }
\end{array}
$$

Contrib. \#1: Agda --bridges

Agda --bridges implements (variant of) CH on top of Agda --cubical

$$
\begin{aligned}
& \text { HoTT (cart. CTT) } \longrightarrow \mathrm{CH} \\
& \text { Agda --cubical } \longrightarrow \\
& \text { Agda --bridges }
\end{aligned}
$$

- First practical proof assistant with internal parametricity

Contrib. \#1: Agda --bridges

Agda --bridges implements (variant of) CH on top of Agda --cubical

$$
\begin{aligned}
& \text { HoTT (cart. CTT) } \longrightarrow \mathrm{CH} \\
& \text { Agda --cubical } \longrightarrow \\
& \text { Agda --bridges }
\end{aligned}
$$

- First practical proof assistant with internal parametricity
- Agda --bridges successfully typechecks the cubical library

Contrib. \#1: Agda --bridges

Agda --bridges implements (variant of) CH on top of Agda --cubical

$$
\begin{aligned}
& \text { HoTT (cart. CTT) } \longrightarrow \mathrm{CH} \\
& \text { Agda --cubical } \longrightarrow \\
& \text { Agda --bridges }
\end{aligned}
$$

- First practical proof assistant with internal parametricity
- Agda --bridges successfully typechecks the cubical library
- Thus univalence and funExt available

Agda --bridges tour (1)

In Agda --bridges...

Agda --bridges tour (1)

In Agda --bridges...

- \exists bridge interval BI and bi0, bi1 : BI

Agda --bridges tour (1)

In Agda --bridges...

- \exists bridge interval BI and bi0, bi1 : BI
- \exists bridge types Bridge $_{A} a_{0} a_{1}$
at each A : Type, $a_{0}, a_{1}: A$

Agda --bridges tour (1)

In Agda --bridges...

- \exists bridge interval BI and bi0, bi1 : BI
- \exists bridge types Bridge $_{A} a_{0} a_{1}$
at each A : Type, $a_{0}, a_{1}: A$
- Essentially

$$
\text { Bridge }_{A} a_{0} a_{1} \approx\left\{\bar{a}: \mathrm{BI} \rightarrow A \mid \bar{a} \text { bi0 }=a_{0}, \bar{a} \text { bi } 1=a_{1}\right\}
$$

Agda --bridges tour (1)

In Agda --bridges...

- \exists bridge interval BI and bi0, bi1 : BI
- \exists bridge types Bridge $A_{A} a_{0} a_{1}$
at each A : Type, $a_{0}, a_{1}: A$
- Essentially

$$
\text { Bridge }_{A} a_{0} a_{1} \approx\left\{\bar{a}: \mathrm{BI} \rightarrow A \mid \overline{\mathrm{a}} \text { bi0 }=a_{0}, \overline{\mathrm{a}} \text { bi } 1=a_{1}\right\}
$$

\triangle
Rules enforce: BI inputs are consumed sub-structurally ("affinely") Some equations of CH can not be stated without that Impl: raise freshness constraints at TC time
Extension of @tick annotation from Agda --guarded

Agda --bridges tour (1)

In Agda --bridges...

- \exists bridge interval BI and bi0, bi1 : BI
- \exists bridge types Bridge $_{A} a_{0} a_{1}$
at each A : Type, $a_{0}, a_{1}: A$
- Essentially

$$
\text { Bridge }_{A} a_{0} a_{1} \approx\left\{\bar{a}: \mathrm{BI} \rightarrow A \mid \overline{\mathrm{a}} \text { bi0 }=a_{0}, \overline{\mathrm{a}} \text { bi } 1=a_{1}\right\}
$$

\triangle
Rules enforce: BI inputs are consumed sub-structurally ("affinely") Some equations of CH can not be stated without that Impl: raise freshness constraints at TC time Extension of @tick annotation from Agda --guarded

- Similarly, \exists types of dependent bridges BridgeP...

$$
(\bar{a}: \forall(x: B I) \ldots)
$$

Agda --bridges tour (2)

Other Agda --bridges primitives

$$
\begin{aligned}
& \text { extent } A B\left(f_{0} f_{1}: A \rightarrow B\right): \\
& \left(\forall a_{0} a_{1} . \text { Bridge }_{A} a_{0} a_{1} \rightarrow \operatorname{Bridge}_{B}\left(f_{0} a_{0}\right)\left(f_{1} a_{1}\right)\right) \quad \longrightarrow \quad \operatorname{Bridge}_{A \rightarrow B} f_{0} f_{1}
\end{aligned}
$$

$$
\text { Gel } A_{0} A_{1}:\left(A_{0} \rightarrow A_{1} \rightarrow \text { Type }\right) \quad \longrightarrow \quad \text { Bridge }_{\text {Type }} A_{0} A_{1}
$$

+ rules proving they are \simeq
Also: redesigned transp, hcomp operations from --cubical See paper

Low level free theorem in Agda --bridges

```
lowChurchBool: ( }\forall(X:\mathrm{ Type ) }->X->X->X)\simeq\mathrm{ Bool -- Church encoding
lowChurchBool = isoToEquiv (iso chToBool boolToCh ( }\lambda{\mathrm{ true }->\mathrm{ refl ; false }->\mathrm{ refl })
    \lambdak}->\mathrm{ funExt }\lambdaA->\mathrm{ funExt }\lambdat->\mathrm{ funExt }\lambdaf->\mathrm{ param-prf kAtf)
    where
        boolToCh: Bool }->(\forall(X:\mathrm{ Type ) }->X->X->X
        boolToCh true X xt xf = xt
        boolToCh false X xt xf = xf
    chToBool: ( }\forall(X:\mathrm{ Type ) }->X->X->X)->\mathrm{ Bool
    chToBool }k=k\mathrm{ Bool true false
    module CH-inverse-cond ( }k:\forall(X:\mathrm{ Type) }->X->X->X)(A:Type) (tf:A) wher
        R:Bool }->A->\mathrm{ Type
        R=\lambdaba->(boolToCh b Atf)\equiva
        k-Gelx:(@tick x: BI) }->\mathrm{ Gel Bool A R x }->\mathrm{ Gel Bool A R x }->\mathrm{ Gel Bool A R x
        k-Gelx x = k (Gel Bool AR x)
        k-Gelx-gel-gel : (@tick x : BI) }->\mathrm{ Gel Bool A R x
        k-Gelx-gel-gel x = k-Gelx x (gel true t (refl) x) ((gel false f (refl) x))
        asBdg : BridgeP ( }\lambdax->\mathrm{ Gel Bool A R x) (k Bool true false) (kAtf)
        asBdg x = k-Gelx-gel-gel }
        param-prf: R (k Bool true false) (kAtf)
        param-prf = ungel {R=R} \lambdax-> asBdg x
    open CH-inverse-cond
```


Drawbacks

Low-level proofs work but

- Require familiarity with extent, Gel, substructural BI
- Lack compositionality. How to reuse for similar free theorems?
- From experience, do not scale

Internally param. DTT vs translations

	Low-level Agda --bridges	Param. translation
Bool $\simeq \forall X . X \rightarrow X \rightarrow X$	\boldsymbol{X}	\boldsymbol{X}
proof work	\mathbf{X} (understand Gel, \ldots)	$\boldsymbol{\nearrow}$ (call the transl.)
proof reuse	\boldsymbol{X}	$/$

Internally param. DTT vs translations

	Low-level Agda --bridges	Param. translation
Bool $\simeq \forall X . X \rightarrow X \rightarrow X$	\boldsymbol{X}	\boldsymbol{X}
proof work	\mathbf{X} (understand Gel, \ldots)	$\boldsymbol{\nearrow}$ (call the transl.)
proof reuse	\boldsymbol{X}	$/$

Contrib. \# 2: attempt at merging 2 methods In 2 steps.

Step 1: Structure relatedness principle is enough

param $=$ preservation of logical relations (not just bridges)
How to get param?
E.g. for $p: \forall X . X \rightarrow X \rightarrow X$

Step 1: Structure relatedness principle is enough

param $=$ preservation of logical relations (not just bridges)
How to get param?
E.g. for $p: \forall X . X \rightarrow X \rightarrow X$

Step 1: Structure relatedness principle is enough

param $=$ preservation of logical relations (not just bridges)
How to get param?
E.g. for $p: \forall X . X \rightarrow X \rightarrow X$

SRP $=$ horizontal \simeq 's at all types and type families

Stating the SRP (meta)

The SRP is a bridge version of the SIP.
The SRP at A : Type reads:

- There is an "observational" characterization Bridge $_{A} a_{0} a_{1} \simeq \ldots$

Stating the SRP (meta)

The SRP is a bridge version of the SIP.
The SRP at A : Type reads:

- There is an "observational" characterization Bridge $_{A} a_{0} a_{1} \simeq \ldots$

Examples

- For Type and П, use Gel and extent
- For Mon, log. relations of monoids
- For hSet, hset-valued relations ,etc,...

Stating the SRP (meta)

The SRP is a bridge version of the SIP.
The SRP at A : Type reads:

- There is an "observational" characterization Bridge $_{A} a_{0} a_{1} \simeq \ldots$

Examples

- For Type and Π, use Gel and extent
- For Mon, log. relations of monoids
- For hSet, hset-valued relations ,etc,...

Assume A has SRP. The SRP at $B: A \rightarrow$ Type reads:

- There is an "observational" characterization Bridge $\mathrm{P}_{x \cdot B(\bar{A} x)} b_{0} b_{1} \simeq \ldots$
Example for family List: Type \rightarrow Type

$$
\text { Bridge } P_{x . \operatorname{List}(\bar{A} \times)} a s_{0} a s_{1} \simeq\{b s \mid \text { list of bridges }\}
$$

Proving the SRP

Proving the SRP by hand is difficult, more so than the SIP.

- extent has two bridge types in its domain
c.f. funext $\left(\forall a_{0} a_{1}\right.$. Bridge $\left._{A} a_{0} a_{1} \rightarrow \operatorname{Bridge}_{B}\left(f_{0} a_{0}\right)\left(f_{1} a_{1}\right)\right) \simeq \operatorname{Bridge}_{A \rightarrow B} f_{0} f_{1}$

Proving the SRP

Proving the SRP by hand is difficult, more so than the SIP.

- extent has two bridge types in its domain
c.f. funext $\left(\forall a_{0} a_{1}\right.$. Bridge $\left._{A} a_{0} a_{1} \rightarrow \operatorname{Bridge}_{B}\left(f_{0} a_{0}\right)\left(f_{1} a_{1}\right)\right) \simeq \operatorname{Bridge}_{A \rightarrow B} f_{0} f_{1}$
- No prop. J-rule for Bridge c.f. SIP at data types

Proving the SRP

Proving the SRP by hand is difficult, more so than the SIP.

- extent has two bridge types in its domain

> c.f. funext $\left(\forall a_{0} a_{1}\right.$. Bridge $\left._{A} a_{0} a_{1} \rightarrow \operatorname{Bridge}_{B}\left(f_{0} a_{0}\right)\left(f_{1} a_{1}\right)\right) \simeq \operatorname{Bridge}_{A \rightarrow B} f_{0} f_{1}$

- No prop. J-rule for Bridge
c.f. SIP at data types
- When proving the SIP, can discard proof-irrelevant fragment of type
- If line of props $P: I \rightarrow$ Type, isContr(PathP $\left.{ }_{i . P} ; p_{0} p_{1}\right)$
- If line of props $P: \mathrm{BI} \rightarrow$ Type, \quad isProp $\left(\right.$ BridgeP $\left._{\chi . P_{\times}} p_{0} p_{1}\right)$

Proving the SRP

Proving the SRP by hand is difficult, more so than the SIP.

- extent has two bridge types in its domain

```
c.f. funext
``` \(\left(\forall a_{0} a_{1}\right.\). Bridge \(\left._{A} a_{0} a_{1} \rightarrow \operatorname{Bridge}_{B}\left(f_{0} a_{0}\right)\left(f_{1} a_{1}\right)\right) \simeq \operatorname{Bridge}_{A \rightarrow B} f_{0} f_{1}\)
- No prop. J-rule for Bridge c.f. SIP at data types
- When proving the SIP, can discard proof-irrelevant fragment of type
- If line of props \(P: I \rightarrow\) Type, isContr(PathP \(\left.{ }_{i . P} ; p_{0} p_{1}\right)\)
- If line of props \(P: \mathrm{BI} \rightarrow\) Type, \(\quad\) isProp \(\left(\right.\) BridgeP \(\left._{x . P_{\times}} p_{0} p_{1}\right)\)

Step 2: we have a DSL for SRP proofs. Idea:
\{ types with the SRP \} =: "relativistic refl. graphs" form a model of DTT c.f. univalent groupoids

\section*{Step 2: a library for SRP proofs}

The library is called ROTT ("relational observational type theory") features observational param as a "rule"

\section*{Step 2: a library for SRP proofs}

The library is called ROTT ("relational observational type theory") features observational param as a "rule"
```

-- 1) write type using ROTT library
X }=\textrm{X}->\textrm{X}->\textrm{X}: DispRRG TypeRR
X\vDashX->X 位 = ->form (X\vDashEIX) ( }->\mathrm{ form XःEIX X\EIX) -- der. tree
-- 2) call param theorem
highChurchBool : ( }\forall(X:\mathrm{ Type ) }->X->X->X)\simeq\mathrm{ Bool -- Church encoding
highChurchBool = isoToEquiv (iso chToBool boolToCh ( }\lambda{\mathrm{ true }->\mathrm{ refl ; false }->\mathrm{ refl })
\lambdak}->\mathrm{ funExt }\lambdaA->\mathrm{ funExt }\lambdat->\mathrm{ funExt }\lambdaf
param TypeRRG X
true t refl false f refl)
where
boolToCh: Bool }->(\forall(X:\mathrm{ Type ) }->X->X->X
boolToCh true X xt xf = xt
boolToCh false X xt xf = xf
chToBool: ( }\forall(X:\mathrm{ Type ) }->X->X->X)->\mathrm{ Bool
chToBool }k=k\mathrm{ Bool true false

```

Compared to low-level, proofs are
- compositional
- concise
- scalable

Compared to low-level, proofs are
- compositional
- concise
- scalable

Remarks
- \(X\) no automation for derivation tree (yet?)

Compared to low-level, proofs are
- compositional
- concise
- scalable

Remarks
- \(X\) no automation for derivation tree (yet?)
- \(X\) no support for iterated parametricity

Compared to low-level, proofs are
- compositional
- concise
- scalable

Remarks
- \(X\) no automation for derivation tree (yet?)
- \(X\) no support for iterated parametricity
- ROTT is similar in scope to "Internal parametricity, without an interval" - Altenkirch et. al" Discussed in the present session. Note: ROTT has no syntax

\section*{Proved examples}
- Simple free theorems involving List
- A scheme of Church encodings (containers)
- Reynolds abstraction thm. (pred.) Sys F \(\longrightarrow\) RRG
- param for \(k: \forall(M: \operatorname{PreMnd}) . \operatorname{List}(M A) \rightarrow M A \quad\) Voigtländer 09

\section*{wip}

Making Agda --bridges compatible with HITs

Church encodings for QITs (e.g.) read as soundness-completeness
- \(\mu F \simeq \forall(A\) : Alg F). A.carr
- "Operations obtainable syn. are operations that exist in all models"
- "equations in the syntax are equations in all models" ...
- FreeGrp \(A \simeq \forall(G g:(G: G r p) \times(A \rightarrow G))\). G.carr

What about coinductives?
- \(\nu F \simeq \exists(C\) : Coalg \(F)\). C.carr
- where \(\exists A B=(\Sigma A B) /\) bridges```

