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What is an oracle?

Definition (Turing ’36)

A partial function N ⇁ N is computable if it can be computed by a
Turing machine (a computer program).

Key idea: We can encode computer programs as natural numbers.
We write the partial function encoded by e as φe .

Theorem (Turing ’36)

There is at least one non computable function.

Proof.

κ(n) :=

{
1 φn(n) ↓= 0

0 otherwise



Definition (Turing ’39)

An oracle Turing machine is a computer program that can query
information from an outside source (an oracle). We say a partial
function f : N ⇁ 2 is computable relative to χ : N → 2 if we can
compute f using χ as an oracle.
We also say that f is Turing reducible to χ and write f ≤T χ.
Note that this defines a preorder on functions N → 2. We refer to
the poset reflection of this preorder as the Turing degrees.

Example

A web browser can send queries (http requests) to a server and
receive back information (webpages).

Queries can depend on the result of previous queries. E.g. a
webbrowser can request all the images mentioned on a webpage
that it just received.



Theorem (Hyland ’82)

The Turing degrees embed into the lattice of subtoposes of the
effective topos, Eff .

We can generalise Hyland’s result to HoTT using cubical
assemblies and higher modalities.



Cubical Assemblies

Theorem (Uemura)

The category of cubical assemblies consists of cubical sets
constructed internally in the lcc of assemblies. Cubical assemblies
form a model of cubical type theory and thereby HoTT.

Theorem (S, Uemura)

Cubical assemblies have a reflective subuniverse that satisfies
Church’s thesis “all functions are computable.”

Theorem (S)

If Ω¬¬ is a classifier for ¬¬-stable propositions in the metatheory,
then the discrete cubical set ∆(Ω¬¬) is a classifier for for
¬¬-stable propositions in cubical sets.



Modalities

Definition (Rijke, Shulman, Spitters)

A uniquely eliminating modality is an operation on types
⃝ : U → U together with unit ηX : X → ⃝X for each X : U such
that the canonical map

∏
z:⃝X ⃝(P(z)) →

∏
x :X ⃝P(ηX (x)) is

an equivalence for X : U and P : ⃝X → U :

X
∑

z:⃝X Pz

⃝X ⃝X

ηX

A type X is

▶ ⃝-modal if ηX : X → ⃝X is an equivalence.

▶ ⃝-separated if for all x , y : X , x = y is ⃝-modal.

▶ ⃝-connected if ⃝X is contractible.



Definition
Given two modalities ⃝ and ⃝′, we write ⃝ ≤T ⃝′ if every
⃝-connected type is ⃝′-connected, or equivalently if every
⃝′-modal type is ⃝-modal.

Definition (Rijke-Shulman-Spitters)

The nullification of a family of types i : I ⊢ A(i) Type is the
smallest modality ⃝ such that A(i) is ⃝-connected for all i : I .

Theorem (Rijke-Shulman-Spitters)

Nullification exists, and can be described explicitly as a higher
inductive type.



The definition below works for any modality ∇, but we will only
apply it where ∇ is the modality of ¬¬-sheafification in cubical
assemblies (nullify all ¬¬-dense propositions).

Definition
An oracle function from A to B is a function χ : A → ∇B.

We can think of the elements of ∇B as partial elements of A and
write b↓ for the type hFibreη∇B

(b).

Definition
The oracle modality, ⃝χ on an oracle χ : A → ∇B is the
nullification of the family of types a : A ⊢ χ(a)↓.
We write U [χ] for the corresponding reflective subuniverse of U ,
i.e. the set of all ⃝χ-modal types.

We think of ⃝χ as the smallest modality that forces χ to be a
total function, and U [χ] as the largest subuniverse of U that
contains the map χ.



Proposition

Assuming ¬¬-resizing we can show for sets B that ∇B has the
same universe level as B.

Proposition

For all χ : A → ∇(B), ⃝χ ≤T ∇.

Proposition

If B is a ¬¬-separated set, then η∇B is an embedding. Hence for all
a : A, χ(a)↓ is a proposition.

Rijke, Shulman, Spitters: modalites generated by propositions are
called topological modalities. They are in particular lex, i.e. U [χ] is
⃝χ-modal itself.



When working with oracle modalities it’s useful to use three
additional axioms that hold in cubical assemblies:

1. A classifier for ¬¬-stable propositions, Ω¬¬.

2. Computable choice: a generalisation of Church’s thesis to all
¬¬-stable relations (possibly partial and multivalued) with
¬¬-stable domain.

3. Markov induction: ∇N is well founded.

Overall aim: to use this as a setting to look for interactions
between homotopy theory and computability theory.



Given an oracle χ, we can consider the group Ω(U ,⃝χN) of
permutations of N computable using χ. By default this includes
information telling us the oracle Turing machine that computes the
permumation. We can erase this information using ∇, leaving only
a group in sets.

Theorem (S)

For oracles χ, χ′ : N → ∇2. If ∇(Ω(U ,⃝χN)) ∼= ∇(Ω(U ,⃝χ′N)),
then ¬¬(χ ≡T χ′).

This can be proved directly,1 but we will give a new proof
combining homotopy theory with synthetic computability theory
using Markov induction.

1Question for the audience: do you know anywhere in the literature this is
done?



Key ideas from computability theory.

▶ “Finite sets are always computable:” For any finite set
F ⊆fin ∇A we have ¬¬

∏
α:F α↓.

▶ Given e, f , g : ⃝χN ≃ ⃝χN, such that f ̸= g we have
⃝χ(e ̸= f + e ̸= g). This is, we can find out, computably in
χ whether e ̸= f or e ̸= g . We can prove this synthetically
using Markov induction.



Key ideas from homotopy theory, following Buchholtz, Van Doorn,
Rijke:

▶ We can encode any oracle χ : N → ∇2 as an element of
Ω(UN, λx .⃝χ 2).

▶ The map UN → U sending A to
∑

N A induces an inclusion of
groups Ω(UN, λx .⃝χ 2) ↪→ Ω(U ,Ω(⃝χN)).

▶ It is useful to know this inclusion factors through wreath
product: The map UN → U factors through

∑
X :U UX :

UA
∑

X :U UX U

Y : A → U (A,Y )

(X ,Y )
∑

x :X Yx

FA D

FA

D

Ω(
∑

X :U UX , (N, λx .⃝χ 2)) is the wreath product S2 ≀ SN



WIP: Studying other modalities based on oracle modalities.

Theorem (Christensen-Opie-Rijke-Scoccola)

For every modality ⃝, there is a modality ⃝= such that a type is
⃝=-modal iff it is ⃝-separated.

We refer to ⃝= as the suspension of ⃝, and write the k-fold
suspension as ⃝(k).2

For a type A we have,

▶ A only contains “computable” points

▶ ∇A includes the additional (non-computable) points of A that
can be proved to exist using classical logic

▶ ⃝χA includes new points that can be computed using χ as
oracle

▶ ⃝=
χA has the same points as A, but we can use the oracle to

construct new paths

2Question for the audience: what is good notation/terminology for this?



We can compute some homotopy groups, but so far only have
general results that don’t require any computability theory:

Proposition

If n ≥ k + 2 then πk(⃝(n)A) = A for all A.

Proposition

If πk(A) is ¬¬-separated, then πk(⃝
(k+1)
χ A) = πk(A).

To show the assumption of ¬¬-separation is necessary:

Example

If Yn is the nth generator of ⃝(k+1)
χ we have ⃝(k+1)

χ Yn = 1 by

construction. However, one can show that Ωk(⃝(k+1)
χ Yn) is

Ωk(Sk) ∗ χ(n)↓, which is trivial precisely when χ(n)↓.



Conjecture

If A is a modest cubical assembly, πk(A) is ¬¬-separated and
n ≤ k then πk(⃝(n)A) = ⃝A

NB: Spheres are modest. One can check several cases directly:
π1(⃝(1)S1), π2(⃝(2)(S2)), π3(⃝(3)(S2)) and π3(⃝(2)(S2)) are all
⃝Z.



More open problems:

1. More examples of modalities in cubical assemblies.

2. Is the category of cubical assemblies hypercomplete?

3. “HoTT-style” synthetic proofs of classic results in computable
group theory e.g. Higman embedding theorem.

4. Computable structures is a subtopic in computability theory
studying countable algebraic structures in the effective topos.
What about computable higher structures?

5. Higher domain theory?

Thanks for your attention!
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