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1. Introduction and Motivation

Connected covers were first studied by Cartan and Serre [CS52]
and Whitehead [Whi52].

For each n, this construction gives us a “universal” n-connected
space over a fixed, pointed base.

If X is the base, we denote this space X 〈n〉.
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Connectivity/connected covers are sometimes useful if we want to
compute homotopy groups of pointed spaces because of facts like
the following:

(Notice we’re using using the name X for the space together with
it’s point, this simplifies the notation).

1. if X is n-connected then πn(X ) = 0.

2. Hurewicz theorem: if X is (n − 1)-connected then
πn(X ) = Hn(X ). Proven in HoTT by Christensen and
Scoccola [CS23].

3. There is a fiber sequence:
K (πn+1(X ), n)→ X 〈n + 1〉 → X 〈n〉.

The latter two are used in the proof of the Serre finiteness theorem
due to Barton and Campion [BC].



2. Connected Covers

Let X be a pointed space.

Recursive definition of X 〈n〉:

X 〈−1〉 = X

X 〈n + 1〉 = fiber|·|n+1

(
| ptX 〈n〉 |n+1

)
With the obvious point.

Diagram:

X 〈n + 1〉 X 〈n〉

1 ‖X 〈n〉‖n+1

y



2. Connected Covers

Alternative definition:

X 〈n〉 = fiber|·|n (| ptX |n)

Diagram:

X 〈n〉 X

1 ‖X‖n

y

As part of the formalization project, there’s a proof that these
definitions are equivalent. But it’s not very illuminating.
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X 〈n〉 = fiber|·| (ptX )

Alternatively we can take this to be the definition of X 〈n〉 and
then it is possible to show that it satisfies a universal property, and
our original formulation follows.



2. Connected Covers

X 〈n〉 is pointed, n-connected and moreover:

It is the terminal pointed, n-connected space with a map into X

(This is the “universal property” referred to above)

Meaning: if Y is pointed and n-connected, and f : Y → X , then
there is a unique filler in the diagram below

X 〈n〉

Y X
f

(See [CS23; BR23])
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It follows that we have group identities

πk(X 〈n〉) =

{
0 if k ≤ n

πk(X ) if k > n

Because the n-sphere is (n − 1)-connected.



2. Connected Covers

Using either definition, we find a map X 〈n + 1〉 → X 〈n〉.

We mentioned before that it is useful to know that the fiber of this
map is K (πn+1(X ), n)

The formal proof of this uses 2 extra tools.



Tools

Puppe’s Lemma:

If X → Y → Z is a fiber sequence, then so is ΩZ → X → Y .
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Puppe’s Lemma:

If X → Y → Z is a fiber sequence, then so is ΩZ → X → Y .

Follows from the pullback lemma:

ΩZ X 1

1 Y Z

y y



Tools

Whitehead’s Principle:

If X and Y are n-truncated spaces and f : X → Y is such that
‖f ‖0 is a bijection, and πn(f , x) : πn(X , x)→ πn(Y , f (x)) is an
isomorphism for each x : X and each n ≥ 1, then f is an
equivalence of types.
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Whitehead’s Principle:

Follows from the lemma that for any X and Y , if f : X → Y is
such that ‖f ‖0 is a bijection and Ω(f , x) : Ω(X , x)→ Ω(Y , f (x))
is an equivalence of types, then f is an equivalence of types.
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Corollary:

If X is n-connected and n + 1-truncated, then:

X = K (πn+1(X ), n + 1)

In fact, something stronger is true: the map K (−, n + 1) is part of
an equivalence between the type of abelian groups and the type of
n-connected, n + 1-truncated types, and its inverse is πn+1

[Doo18].

But we do not use this here.
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2. Connected Covers

Back to our goal.

It follows from the corollary to Whitehead’s principle just
mentioned, and some of the facts about connected covers
mentioned above, that

‖X 〈n〉‖n+1 = K (πn+1(X ), n + 1)

So we have a fiber sequence:

X 〈n + 1〉 → X 〈n〉 → K (πn+1(X ), n + 1)

So, using Puppe’s lemma, we have a fiber sequence:

K (πn+1(X ), n)→ X 〈n + 1〉 → X 〈n〉



Conclusion: Code
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Appendix: Sketched Example

The abstract I submitted mentioned the example of S1 ∨ S2.

The 1st connected cover (“universal cover”) of this space is
∨

Z S2

Given this, we can calculate π2(S1 ∨ S2):

π2

(∨
Z

S2

)
= H2

(∨
Z

S2

)
=
⊕
Z

H2(S2) =
⊕
Z

Z



Appendix: Sketched Example

Why is
∨

Z S2 the 1st connected cover?

This argument was pointed out to me by David Wärn after my
talk:

First observe:

‖S1 ∨ S2‖1 is equivalent to S1 and the truncation map becomes
the pointed projection under this equivalence.



Appendix: Sketched Example

The wedge sum is defined using a pushout diagram like so:

1 S1

S2 S1 ∨ S2

Taking the fibers with the composites of the map S1 ∨ S2 → S1

gives the following diagram:

Z 1

S2 × Z (S1 ∨ S2)〈1〉



Appendix: Sketched Example

Placing our two diagrams one atop the other and applying the
pullback lemma, we have that each face of the cube below is a
pullback square:

Z

S2 × Z 1

(S1 ∨ S2)〈1〉

1

S2 S1

S1 ∨ S2



Appendix: Sketched Example

It follows by descent [c.f. e.g. BDR18] that this square:

Z 1

S2 × Z S1 ∨ S2〈1〉

is a pushout square.

So that (S1 ∨ S2)〈1〉 '
∨

Z S2
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