Connected Covers in Cubical Agda

Owen Milner

April 2024

1. Introduction and Motivation

Connected covers were first studied by Cartan and Serre [CS52] and Whitehead [Whi52].

For each n, this construction gives us a "universal" n-connected space over a fixed, pointed base.

If X is the base, we denote this space $X\langle n\rangle$.

1. Introduction and Motivation

Connectivity/connected covers are sometimes useful if we want to compute homotopy groups of pointed spaces because of facts like the following:

1. Introduction and Motivation

Connectivity/connected covers are sometimes useful if we want to compute homotopy groups of pointed spaces because of facts like the following:
(Notice we're using using the name X for the space together with it's point, this simplifies the notation).

1. if X is n-connected then $\pi_{n}(X)=0$.

1. Introduction and Motivation

Connectivity/connected covers are sometimes useful if we want to compute homotopy groups of pointed spaces because of facts like the following:
(Notice we're using using the name X for the space together with it's point, this simplifies the notation).

1. if X is n-connected then $\pi_{n}(X)=0$.
2. Hurewicz theorem: if X is $(n-1)$-connected then $\pi_{n}(X)=H_{n}(X)$. Proven in HoTT by Christensen and Scoccola [CS23].

1. Introduction and Motivation

Connectivity/connected covers are sometimes useful if we want to compute homotopy groups of pointed spaces because of facts like the following:
(Notice we're using using the name X for the space together with it's point, this simplifies the notation).

1. if X is n-connected then $\pi_{n}(X)=0$.
2. Hurewicz theorem: if X is $(n-1)$-connected then $\pi_{n}(X)=H_{n}(X)$. Proven in HoTT by Christensen and Scoccola [CS23].
3. There is a fiber sequence:

$$
K\left(\pi_{n+1}(X), n\right) \rightarrow X\langle n+1\rangle \rightarrow X\langle n\rangle .
$$

1. Introduction and Motivation

Connectivity/connected covers are sometimes useful if we want to compute homotopy groups of pointed spaces because of facts like the following:
(Notice we're using using the name X for the space together with it's point, this simplifies the notation).

1. if X is n-connected then $\pi_{n}(X)=0$.
2. Hurewicz theorem: if X is $(n-1)$-connected then $\pi_{n}(X)=H_{n}(X)$. Proven in HoTT by Christensen and Scoccola [CS23].
3. There is a fiber sequence:

$$
K\left(\pi_{n+1}(X), n\right) \rightarrow X\langle n+1\rangle \rightarrow X\langle n\rangle .
$$

The latter two are used in the proof of the Serre finiteness theorem due to Barton and Campion $[\mathrm{BC}]$.

2. Connected Covers

Let X be a pointed space.
Recursive definition of $X\langle n\rangle$:

$$
\begin{aligned}
& X\langle-1\rangle=X \\
& X\langle n+1\rangle=\text { fiber }_{|\cdot|_{n+1}}\left(\left|\operatorname{pt}_{X\langle n\rangle}\right|_{n+1}\right)
\end{aligned}
$$

With the obvious point.
Diagram:

$$
\begin{gathered}
X\langle n+1\rangle \longrightarrow X\langle n\rangle \\
\downarrow \\
\downarrow \\
1
\end{gathered}
$$

2. Connected Covers

Alternative definition:

$$
X\langle n\rangle=\text { fiber }_{|\cdot|_{n}}\left(\left|\mathrm{pt}_{X}\right|_{n}\right)
$$

Diagram:

As part of the formalization project, there's a proof that these definitions are equivalent. But it's not very illuminating.

2. Connected Covers

$$
X\langle n\rangle=\text { fiber }_{|\cdot|}\left(\mathrm{pt}_{X}\right)
$$

Alternatively we can take this to be the definition of $X\langle n\rangle$ and then it is possible to show that it satisfies a universal property, and our original formulation follows.

2. Connected Covers

$X\langle n\rangle$ is pointed, n-connected and moreover:
It is the terminal pointed, n-connected space with a map into X
(This is the "universal property" referred to above)
Meaning: if Y is pointed and n-connected, and $f: Y \rightarrow X$, then there is a unique filler in the diagram below

(See [CS23; BR23])

2. Connected Covers

It follows that we have group identities

$$
\pi_{k}(X\langle n\rangle)=\left\{\begin{array}{cc}
0 & \text { if } k \leq n \\
\pi_{k}(X) & \text { if } k>n
\end{array}\right.
$$

Because the n-sphere is $(n-1)$-connected.

2. Connected Covers

Using either definition, we find a map $X\langle n+1\rangle \rightarrow X\langle n\rangle$.
We mentioned before that it is useful to know that the fiber of this map is $K\left(\pi_{n+1}(X), n\right)$

The formal proof of this uses 2 extra tools.

Tools

Puppe's Lemma:

If $X \rightarrow Y \rightarrow Z$ is a fiber sequence, then so is $\Omega Z \rightarrow X \rightarrow Y$.

Tools

Puppe's Lemma:
If $X \rightarrow Y \rightarrow Z$ is a fiber sequence, then so is $\Omega Z \rightarrow X \rightarrow Y$.
Follows from the pullback lemma:

Tools

Whitehead's Principle:
If X and Y are n-truncated spaces and $f: X \rightarrow Y$ is such that $\|f\|_{0}$ is a bijection, and $\pi_{n}(f, x): \pi_{n}(X, x) \rightarrow \pi_{n}(Y, f(x))$ is an isomorphism for each $x: X$ and each $n \geq 1$, then f is an equivalence of types.

Tools

Whitehead's Principle:
Follows from the lemma that for any X and Y, if $f: X \rightarrow Y$ is such that $\|f\|_{0}$ is a bijection and $\Omega(f, x): \Omega(X, x) \rightarrow \Omega(Y, f(x))$ is an equivalence of types, then f is an equivalence of types.

```
\OmegaEquiv }->\mathrm{ Equiv : {A B : Type l}
    (f : A }->\mathrm{ B)
    (hf0 : isEquiv (map f))
    (hf : (a : A)
        isEquiv
        ( fst ( }\Omega->{A=(A,a)}{B=(B,f a)} (f , refl))))
    isEquiv f
```


Tools

```
WhiteheadsLemma {n=zero} hA hB f hf0 hf = isEquivFromIsContr f hA hB
WhiteheadsLemma {A=A} {B=B} {n= suc n} hA hB f hf0 hf =
    \OmegaEquiv }->\mathrm{ Equiv
    (f)
    ( hf0)
    ( \lambda a }->\mathrm{ WhiteheadsLemma
        ( isOfHLevelPath' n hA a a)
        ( isOfHLevelPath' n hB (f a) (f a))
        ( fst (\Omega->{A=(A, a)} {B=(B , f a)} (f , refl)))
        ( hf a 0)
        ( \OmegaWhiteheadHyp a))
```


Tools

Corollary:
If X is n-connected and $n+1$-truncated, then:

$$
X=K\left(\pi_{n+1}(X), n+1\right)
$$

Tools

Corollary:
If X is n-connected and $n+1$-truncated, then:

$$
X=K\left(\pi_{n+1}(X), n+1\right)
$$

In fact, something stronger is true: the map $K(-, n+1)$ is part of an equivalence between the type of abelian groups and the type of n-connected, $n+1$-truncated types, and its inverse is π_{n+1} [Doo18].

But we do not use this here.

2. Connected Covers

Back to our goal.
It follows from the corollary to Whitehead's principle just mentioned, and some of the facts about connected covers mentioned above, that

$$
\|X\langle n\rangle\|_{n+1}=K\left(\pi_{n+1}(X), n+1\right)
$$

2. Connected Covers

Back to our goal.
It follows from the corollary to Whitehead's principle just mentioned, and some of the facts about connected covers mentioned above, that

$$
\|X\langle n\rangle\|_{n+1}=K\left(\pi_{n+1}(X), n+1\right)
$$

So we have a fiber sequence:

$$
X\langle n+1\rangle \rightarrow X\langle n\rangle \rightarrow K\left(\pi_{n+1}(X), n+1\right)
$$

2. Connected Covers

Back to our goal.
It follows from the corollary to Whitehead's principle just mentioned, and some of the facts about connected covers mentioned above, that

$$
\|X\langle n\rangle\|_{n+1}=K\left(\pi_{n+1}(X), n+1\right)
$$

So we have a fiber sequence:

$$
X\langle n+1\rangle \rightarrow X\langle n\rangle \rightarrow K\left(\pi_{n+1}(X), n+1\right)
$$

So, using Puppe's lemma, we have a fiber sequence:

$$
K\left(\pi_{n+1}(X), n\right) \rightarrow X\langle n+1\rangle \rightarrow X\langle n\rangle
$$

Conclusion: Code

```
EM<->FibSeq : (X : Pointed \ell) (n : NN)
    -> FiberSeq (X < (2 + n) >) (X < (suc n) >) (EM. (nAb n X) (2 + n))
EM<->FibSeq X n =
    BaseEqFiberSeq
    ( TruncConnCovEqEM. X n)
    ( ConnCovFiberSeq X (suc n))
FibSeqEqEM - : (X : Pointed \ell) (n : N )
    -> FiberSeq (\Omega (EM. (nAb n X) (2 + n))) (X < (2 + n) >) (X < (suc n) >)
    \equiv FiberSeq (EM. (nAb n X) (suc n)) (X < (2 + n) >) (X < (suc n) >)
FibSeqEqEM}\cdot\mp@code{X n i =
    FiberSeq
    ((EM\simeq\OmegaEM+1. {G= пAb n X} (suc n)) (~ i))
    ( X< (2 + n) >)
    ( X< (suc n) >)
<->EMFibSeq : (X : Pointed \ell) (n : NN
    -> FiberSeq (EM. (nAb n X) (suc n)) (X < (2 + n) >) (X< (suc n) >)
<->EMFibSeq X n = transport (FibSeqEqEM. X n) (puppe (EM<->FibSeq X n))
```

ПU:**- EMIsFiber.agda Bot L63 Git-main (Agda:Checked)

References I

[BC] Reid Barton and Tim Campion. The Finite Presentability of $\pi_{k}\left(S^{m}\right)$ via Ganea's Theorem. Unpublished.
[BDR18] Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke. "Higher Groups in Homotopy Type Theory". In: LICS '18: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. 2018.
[BR23] Ulrik Buchholtz and Egbert Rijke. "The Long Exact Sequence of Homotopy n-Groups". In: Mathematical Structures in Computer Science 33.8 (2023), pp. 679-687.
[CS23] J. Daniel Christensen and Luis Scoccola. "The Hurewicz Theorem in Homotopy Type Theory". In: Algebraic \& Geometric Topology 23.5 (2023), pp. 2107-2140.

References II

[CS52] Henri Cartan and Jean-Pierre Serre. "Espaces Fibrés et Groupes d'Homotopie. I. Constructions Générales". In: Comptes Redus Hebdomadaires de Séances de l'Académie des Sciences. 1952, pp. 288-290.
[Doo18] Floris van Doorn. "On the Formalization of Higher Inductive Types and Synthetic Homotopy Theory". PhD thesis. Carnegie Mellon University, 2018.
[Whi52] George W. Whitehead. "Fiber Spaces and the Eilenberg Homology Groups". In: Proceedings of the National Academy of Sciences. Vol. 38. 5. 1952, pp. 426-430.

Appendix: Sketched Example

The abstract I submitted mentioned the example of $S^{1} \vee S^{2}$.

Appendix: Sketched Example

The abstract I submitted mentioned the example of $S^{1} \vee S^{2}$.
The 1st connected cover ("universal cover") of this space is $\bigvee_{\mathbb{Z}} S^{2}$

Appendix: Sketched Example

The abstract I submitted mentioned the example of $S^{1} \vee S^{2}$.
The 1st connected cover ("universal cover") of this space is $\bigvee_{\mathbb{Z}} S^{2}$
Given this, we can calculate $\pi_{2}\left(S^{1} \vee S^{2}\right)$:

Appendix: Sketched Example

The abstract I submitted mentioned the example of $S^{1} \vee S^{2}$.
The 1st connected cover ("universal cover") of this space is $\bigvee_{\mathbb{Z}} S^{2}$
Given this, we can calculate $\pi_{2}\left(S^{1} \vee S^{2}\right)$:

$$
\pi_{2}\left(\bigvee_{\mathbb{Z}} S^{2}\right)=H_{2}\left(\bigvee_{\mathbb{Z}} S^{2}\right)=\bigoplus_{\mathbb{Z}} H_{2}\left(S^{2}\right)=\bigoplus_{\mathbb{Z}} \mathbb{Z}
$$

Appendix: Sketched Example

Why is $\bigvee_{\mathbb{Z}} S^{2}$ the 1st connected cover?
This argument was pointed out to me by David Wärn after my talk:

First observe:
$\left\|S^{1} \vee S^{2}\right\|_{1}$ is equivalent to S^{1} and the truncation map becomes the pointed projection under this equivalence.

Appendix: Sketched Example

The wedge sum is defined using a pushout diagram like so:

Taking the fibers with the composites of the map $S^{1} \vee S^{2} \rightarrow S^{1}$ gives the following diagram:

Appendix: Sketched Example

Placing our two diagrams one atop the other and applying the pullback lemma, we have that each face of the cube below is a pullback square:

Appendix: Sketched Example

It follows by descent [c.f. e.g. BDR18] that this square:

is a pushout square.
So that $\left(S^{1} \vee S^{2}\right)\langle 1\rangle \simeq \bigvee_{\mathbb{Z}} S^{2}$

