

The Steenrod Squares in HoTT Revisited

Axel Ljungström¹, David Wärn²

¹Stockholm University, ²University of Gothenburg

April 3, 2024

- Let's leave the cellular world
- This talk is about the Steenrod squares, a construction on the usual 'representable' cohomology theory in HoTT.
- Originally investigated by Brunerie [1]. The goal of this project is to finish what he started.

$$H^n(A,G) = \|X \to K(G,n)\|_0$$

• Recall: we define the *n*th cohomoloy group of a space X with coefficients in an abelian group G by

$$H^n(A,G) = \|X \to K(G,n)\|_0$$

 Above, K(G, n) denotes the nth Eilenberg-MacLane space (over G). It:

$$H^n(A,G) = \|X \to K(G,n)\|_0$$

- Above, K(G, n) denotes the nth Eilenberg-MacLane space (over G). It:
 - is (n-1)-connected,

$$H^n(A,G) = \|X \to K(G,n)\|_0$$

- Above, K(G, n) denotes the nth Eilenberg-MacLane space (over G). It:
 - is (n-1)-connected,
 - comes with equivalence $K(G, n) \xrightarrow{\sigma} \Omega K(G, n+1)$

$$H^n(A,G) = \|X \to K(G,n)\|_0$$

- Above, K(G, n) denotes the nth Eilenberg-MacLane space (over G). It:
 - is (n-1)-connected,
 - comes with equivalence $K(G, n) \xrightarrow{\sigma} \Omega K(G, n+1)$
 - satisfies $K(G,0) \simeq G$,

$$H^n(A,G) = \|X \to K(G,n)\|_0$$

- Above, K(G, n) denotes the nth Eilenberg-MacLane space (over G). It:
 - is (n-1)-connected,
 - comes with equivalence $K(G, n) \xrightarrow{\sigma} \Omega K(G, n+1)$
 - satisfies $K(G,0) \simeq G$,
 - comes with an invertible and commutative H-space structure $+: K(G, n) \times K(G, n) \rightarrow K(G, n)$

$$H^n(A,G) = \|X \to K(G,n)\|_0$$

- Above, K(G, n) denotes the nth Eilenberg-MacLane space (over G). It:
 - is (n-1)-connected,
 - comes with equivalence $K(G, n) \xrightarrow{\sigma} \Omega K(G, n+1)$
 - satisfies $K(G,0) \simeq G$,
 - comes with an invertible and commutative H-space structure $+: K(G, n) \times K(G, n) \rightarrow K(G, n)$
 - and, when G is a (comm) ring R, a graded multiplication $\smile: K(R, n) \times K(R, m) \rightarrow K(R, n+m)$ called the *cup product*.

$$H^n(A,G) = \|X \to K(G,n)\|_0$$

- Above, K(G, n) denotes the nth Eilenberg-MacLane space (over G). It:
 - is (n-1)-connected,
 - comes with equivalence $K(G, n) \xrightarrow{\sigma} \Omega K(G, n+1)$
 - satisfies $K(G,0) \simeq G$,
 - comes with an invertible and commutative H-space structure $+: K(G, n) \times K(G, n) \rightarrow K(G, n)$
 - and, when G is a (comm) ring R, a graded multiplication $\smile: K(R, n) \times K(R, m) \rightarrow K(R, n+m)$ called the *cup product*.
- These operations turn $H^*(A, R)$ into a graded commutative ring with addition + and multiplication \smile .

• *H*^{*} is useful for distinguishing between spaces...

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited

- H^* is useful for distinguishing between spaces...
- ...but it can happen $H^*(X, R) \cong H^*(Y, R)$ despite $X \not\simeq Y$.

- *H*^{*} is useful for distinguishing between spaces...
- ...but it can happen $H^*(X, R) \cong H^*(Y, R)$ despite $X \not\simeq Y$.
- Fortunately, when considering $R = \mathbb{Z}/2\mathbb{Z}$, there are further invariants: the Steenrod squares.

- *H*^{*} is useful for distinguishing between spaces...
- ...but it can happen $H^*(X, R) \cong H^*(Y, R)$ despite $X \not\simeq Y$.
- Fortunately, when considering $R = \mathbb{Z}/2\mathbb{Z}$, there are further invariants: the Steenrod squares.
- The Steenrod squares: a set of cohomology operations $\operatorname{Sq}^n: H^i(X, \mathbb{Z}/2\mathbb{Z}) \to H^{i+n}(X, \mathbb{Z}/2\mathbb{Z})$

- *H*^{*} is useful for distinguishing between spaces...
- ...but it can happen $H^*(X, R) \cong H^*(Y, R)$ despite $X \not\simeq Y$.
- Fortunately, when considering $R = \mathbb{Z}/2\mathbb{Z}$, there are further invariants: the Steenrod squares.
- The Steenrod squares: a set of cohomology operations $\operatorname{Sq}^n: H^i(X, \mathbb{Z}/2\mathbb{Z}) \to H^{i+n}(X, \mathbb{Z}/2\mathbb{Z})$
- Brunerie [1] defined these in HoTT but didn't prove any of their defining properties

- *H*^{*} is useful for distinguishing between spaces...
- ...but it can happen $H^*(X, R) \cong H^*(Y, R)$ despite $X \not\simeq Y$.
- Fortunately, when considering $R = \mathbb{Z}/2\mathbb{Z}$, there are further invariants: the Steenrod squares.
- The Steenrod squares: a set of cohomology operations $\operatorname{Sq}^n: H^i(X, \mathbb{Z}/2\mathbb{Z}) \to H^{i+n}(X, \mathbb{Z}/2\mathbb{Z})$
- Brunerie [1] defined these in HoTT but didn't prove any of their defining properties
- In this talk, we will revisit Brunerie's definition and present proofs of several of their key properties.

The Steenrod Squares, axiomatically

• Notation: Let $K_n := K(\mathbb{Z}/2\mathbb{Z}, n)$ and $H^n(X) := H^n(X, \mathbb{Z}/2\mathbb{Z})$

- ∢ ≣ →

 э

The Steenrod Squares, axiomatically

- Notation: Let $K_n := K(\mathbb{Z}/2\mathbb{Z}, n)$ and $H^n(X) := H^n(X, \mathbb{Z}/2\mathbb{Z})$
- As usual in HoTT, we prefer to do all the work on the level of Eilenberg-MacLane spaces and then lift everything to cohomology groups/rings.

The Steenrod Squares, axiomatically

- Notation: Let $K_n := K(\mathbb{Z}/2\mathbb{Z}, n)$ and $H^n(X) := H^n(X, \mathbb{Z}/2\mathbb{Z})$
- As usual in HoTT, we prefer to do all the work on the level of Eilenberg-MacLane spaces and then lift everything to cohomology groups/rings.

Theorem 1 (partially proved)

There is a family of pointed maps $Sq_{(i)}^n : K_i \to_{\star} K_{i+n}$ s.t.

- (a) $Sq^{0}(x) = x$
- (b) $Sq_n^n = x^2$ (:= x \sigma x)
- (c) $Sq_i^n(x) = 0$ if n > i
- (d) The Cartan formula

$$\operatorname{Sq}^{n}(x \smile y) = \sum_{m+k=n} \operatorname{Sq}^{m}(x) \smile \operatorname{Sq}^{k}(y)$$

Theorem 1 (ctd.)

Furthermore, Sqⁿ respects suspension

and the Adem relations: when i < 2j, we have

$$\mathsf{Sq}^{i} \circ \mathsf{Sq}^{j}(x) = \sum_{k=0}^{\lfloor i/2 \rfloor} \binom{j-k-1}{i-2k}_{\mathsf{mod}\,2} \mathsf{Sq}^{i+j-k} \circ \mathsf{Sq}^{k}(x)$$

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited

• Brunerie constructed the squares using *unordered smash products*

- Brunerie constructed the squares using *unordered smash products*
- For technical reasons, we will give an equivalent construction using *unordered joins*

- Brunerie constructed the squares using *unordered smash products*
- For technical reasons, we will give an equivalent construction using *unordered joins*
- Recall (cf. Buchholtz [2] and B. & Rijke [3]):

- Brunerie constructed the squares using *unordered smash products*
- For technical reasons, we will give an equivalent construction using *unordered joins*
- Recall (cf. Buchholtz [2] and B. & Rijke [3]):

•
$$\mathbb{R}P^{\infty} := \sum_{A:\mathcal{U}} \|A \simeq 2\|_{-1}$$
 (pointed by 2).

• Let us simply write $X : \mathbb{R}P^{\infty}$ and take the second projection implicit.

- Brunerie constructed the squares using *unordered smash products*
- For technical reasons, we will give an equivalent construction using *unordered joins*
- Recall (cf. Buchholtz [2] and B. & Rijke [3]):
 - $\mathbb{R}P^{\infty} := \sum_{A:\mathcal{U}} \|A \simeq 2\|_{-1}$ (pointed by 2).
 - Let us simply write $X : \mathbb{R}P^{\infty}$ and take the second projection implicit.
 - There is a pointed equivalence $t: \mathbb{R}P^{\infty} \simeq_{\star} K_1$

- Brunerie constructed the squares using *unordered smash products*
- For technical reasons, we will give an equivalent construction using *unordered joins*
- Recall (cf. Buchholtz [2] and B. & Rijke [3]):

•
$$\mathbb{R}P^{\infty} := \sum_{A:\mathcal{U}} \|A \simeq 2\|_{-1}$$
 (pointed by 2).

- Let us simply write $X : \mathbb{R}P^{\infty}$ and take the second projection implicit.
- There is a pointed equivalence $t:\mathbb{R}P^{\infty}\simeq_{\star}K_{1}$
- Given $X : \mathbb{R}P^{\infty}$ and $n : X \to \mathbb{N}$, we may form its sum $\Sigma n : \mathbb{N}$.

- Brunerie constructed the squares using *unordered smash products*
- For technical reasons, we will give an equivalent construction using *unordered joins*
- Recall (cf. Buchholtz [2] and B. & Rijke [3]):
 - $\mathbb{R}P^{\infty} := \sum_{A:\mathcal{U}} \|A \simeq 2\|_{-1}$ (pointed by 2).
 - Let us simply write $X : \mathbb{R}P^{\infty}$ and take the second projection implicit.
 - There is a pointed equivalence $t: \mathbb{R}P^{\infty} \simeq_{\star} K_1$
 - Given $X : \mathbb{R}P^{\infty}$ and $n : X \to \mathbb{N}$, we may form its sum $\Sigma n : \mathbb{N}$.
- Idea: obtain Steenrod squares as a special case of an 'unordered cup product'

Let X : ℝP[∞] and A : X → U. We call the type Π_{x:X}A(x) the type of unordered pairs of A (rel. X)

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited

- Let X : ℝP[∞] and A : X → U. We call the type Π_{x:X}A(x) the type of unordered pairs of A (rel. X)
- Have: an ordered cup product

$$\smile: \Pi_{x:2} K_{n(x)} \to K_{n(0)+n(1)}$$

- Let X : ℝP[∞] and A : X → U. We call the type Π_{x:X}A(x) the type of unordered pairs of A (rel. X)
- Have: an ordered cup product

$$\smile: \Pi_{x:2} K_{n(x)} \to K_{n(0)+n(1)}$$

• Want: an unordered cup product

$$\Pi_{x:X}K_{n(x)} \to K_{\Sigma n}$$

- Let X : ℝP[∞] and A : X → U. We call the type Π_{x:X}A(x) the type of unordered pairs of A (rel. X)
- Have: an ordered cup product

$$\smile: \Pi_{x:2} K_{n(x)} \to K_{n(0)+n(1)}$$

• Want: an unordered cup product

$$\prod_{x:X} K_{n(x)} \to K_{\Sigma n}$$

• To get this, we need to endow this function space with more structure. To this end, we'll use joins.

Definition 2

Given $X : \mathbb{R}P^{\infty}$ and $A : X \to U$, the unordered join of A (rel. X) is the pushout

This coincides with the usual join when X is 2

Definition 3

Given $X : \mathbb{R}P^{\infty}$ and $A : X \to U_{\star}$ and $B : U_{\star}$, we define the type of bi-homs by

$$A \rightarrow^X_\star B := \sum_{F: \Pi_{x:X}A(x) \rightarrow B} \texttt{isBiHom}_X(F)$$

where

$$\texttt{isBiHom}_X(F) := (f : \Pi_{x:X}A(x)) \to \bigstar_{x:X}(f(x) = \star_{A(x)}) \to F(f) = \star_B$$

3) J

• The point: $(A \rightarrow^2_{\star} B) \simeq (A_0 \land A_1 \rightarrow_{\star} B)$

・ロト・日・・日・・日・ うへの

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited

- The point: $(A \rightarrow^2_{\star} B) \simeq (A_0 \land A_1 \rightarrow_{\star} B)$
- The type of bi-homs over K_{n(-)} for some n : X → N has some nice properties:

- The point: $(A \rightarrow^2_{\star} B) \simeq (A_0 \land A_1 \rightarrow_{\star} B)$
- The type of bi-homs over K_{n(-)} for some n : X → N has some nice properties:

Proposition 4

$$(K_{n(-)} \rightarrow^X_\star K_{\Sigma n}) \simeq \mathbb{Z}/2$$

- The point: $(A \rightarrow^2_{\star} B) \simeq (A_0 \land A_1 \rightarrow_{\star} B)$
- The type of bi-homs over K_{n(-)} for some n : X → N has some nice properties:

Proposition 4

$$(K_{n(-)} \rightarrow^X_{\star} K_{\Sigma n}) \simeq \mathbb{Z}/2$$

Proposition 5

The unique non-trivial element $\smile_{x:X} : K_{n(-)} \to^X_* K_{\Sigma n}$ is simply the cup product when X is 2

- The point: $(A \rightarrow^2_{\star} B) \simeq (A_0 \land A_1 \rightarrow_{\star} B)$
- The type of bi-homs over K_{n(-)} for some n : X → N has some nice properties:

Proposition 4

$$(K_{n(-)} \rightarrow^X_{\star} K_{\Sigma n}) \simeq \mathbb{Z}/2$$

Proposition 5

The unique non-trivial element $\smile_{x:X} : K_{n(-)} \to^X_* K_{\Sigma n}$ is simply the cup product when X is 2

• Notation: Given $f : \prod_{x:X} K_{n(x)}$, let us use $\smile_{x:X} f(x)$ to denote the application of the underlying function of $\smile_{x:X}$ to f.

• A total steenrod square is obtained by taking the 'diagonal' of $\smile_{x:X} : K_{n(-)} \rightarrow^X_* K_{\Sigma n}$.

▲日 ★ ▲ ★ ★ 単 ★ ▲ ● ★ ▲ ● ★ ● ★ ● ★ ● ★ ● ★

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited

- A total steenrod square is obtained by taking the 'diagonal' of $\smile_{x:X} : K_{n(-)} \rightarrow^X_* K_{\Sigma n}$.
- Let $m : \mathbb{N}$, $a : K_m$ and $X : \mathbb{R}P^{\infty}$. Consider $n : X \to \mathbb{N}$ and $f : \prod_{n(x)} K_{n(x)}$ defined by

$$n(x) = m$$
 and $f(x) = a$

- A total steenrod square is obtained by taking the 'diagonal' of $\smile_{x:X} : K_{n(-)} \rightarrow^X_* K_{\Sigma n}$.
- Let $m : \mathbb{N}$, $a : K_m$ and $X : \mathbb{R}P^{\infty}$. Consider $n : X \to \mathbb{N}$ and $f : \prod_{n(x)} K_{n(x)}$ defined by

$$n(x) = m$$
 and $f(x) = a$

We have $\smile_{x:X} f(x) : K_{2m}$

- A total steenrod square is obtained by taking the 'diagonal' of $\smile_{x:X} : \mathcal{K}_{n(-)} \rightarrow^X_{\star} \mathcal{K}_{\Sigma n}$.
- Let $m : \mathbb{N}$, $a : K_m$ and $X : \mathbb{R}P^{\infty}$. Consider $n : X \to \mathbb{N}$ and $f : \prod_{n(x)} K_{n(x)}$ defined by

$$n(x) = m$$
 and $f(x) = a$

We have $\smile_{x:X} f(x) : K_{2m}$

• Thus, we have constructed a map $S = K_m o_\star (\mathbb{R}P^\infty o K_{2m})$

- A total steenrod square is obtained by taking the 'diagonal' of $\smile_{x:X} : \mathcal{K}_{n(-)} \rightarrow^X_{\star} \mathcal{K}_{\Sigma n}$.
- Let $m : \mathbb{N}$, $a : K_m$ and $X : \mathbb{R}P^{\infty}$. Consider $n : X \to \mathbb{N}$ and $f : \prod_{n(x)} K_{n(x)}$ defined by

$$n(x) = m$$
 and $f(x) = a$

We have $\smile_{x:X} f(x) : K_{2m}$

• Thus, we have constructed a map $S = K_m o_\star (\mathbb{R}P^\infty o K_{2m})$

Theorem 6 (L., Mörtberg [4])

The map
$$e: K_0 \times \cdots \times K_m \to (\mathbb{R}P^{\infty}_n \to K_m)$$
 defined by
 $e(x_0, \dots, x_n) := \lambda y \cdot \sum_{i=0}^n t(y)^i \smile x_{n-i}$

is an equivalence

• Via this equivalence, we get a *total square* \widehat{Sq} via post-composition

• Via this equivalence, we get a *total square* Sq via post-composition

• ...and thus, we can define our Steenrod Squares $Sq^n: K_m \to K_{m+n}$ for $0 \le n \le m$ via

$$K_m \xrightarrow{\sim} K_0 \times \cdots \times K_{2m} \xrightarrow{\operatorname{pr}_{m+n}} K_{m+n}$$

and $Sq^n(x) = 0$ otherwise.

• As Sqⁿ merely is a special case of the unordered cup product $\smile_{x:X} : K_{n(-)} \rightarrow^X_* K_{\sum n}$, we may translate statements about Sqⁿ to statements concerning $\smile_{x:X}$.

- As Sqⁿ merely is a special case of the unordered cup product $\smile_{x:X} : K_{n(-)} \rightarrow^X_{\star} K_{\sum n}$, we may translate statements about Sqⁿ to statements concerning $\smile_{x:X}$.
- In particular, both the Cartan formula and the Adem relations turn out to be special cases of the following theorem

- As Sqⁿ merely is a special case of the unordered cup product $\smile_{x:X} : K_{n(-)} \rightarrow^X_* K_{\sum n}$, we may translate statements about Sqⁿ to statements concerning $\smile_{x:X}$.
- In particular, both the Cartan formula and the Adem relations turn out to be special cases of the following theorem

Theorem 7

For any $X, Y : \mathbb{R}P^{\infty}$ and $n : X \times Y \to \mathbb{N}$ and any unordered quadruple $f : \prod_{x:X} \prod_{y:Y} K_{n(x,y)}$, we have

$$\bigcup_{x:X} \bigcup_{y:Y} f(x,y) = \bigcup_{y:Y} \bigcup_{x:X} f(x,y)$$

Theorem 8

For any $X, Y : \mathbb{R}P^{\infty}$ and $A : X \times Y \to \mathcal{U}$, we have a function

$$\underset{x:X y:Y}{*} \overset{*}{A}(x,y) \rightarrow \underset{y:Y x:X}{*} \overset{*}{A}(x,y)$$

• We're not even asking for an equivalence – just a plain function!

Theorem 8

For any $X, Y : \mathbb{R}P^{\infty}$ and $A : X \times Y \to \mathcal{U}$, we have a function

$$\underset{x:X y:Y}{*} A(x,y) \to \underset{y:Y x:X}{*} A(x,y)$$

- We're not even asking for an equivalence just a plain function!
- However, this was the main obstacle of the formalisation of our proofs

Theorem 8

For any $X, Y : \mathbb{R}P^{\infty}$ and $A : X \times Y \to \mathcal{U}$, we have a function

$$\underset{x:X \ y:Y}{*} A(x,y) \rightarrow \underset{y:Y \ x:X}{*} A(x,y)$$

- We're not even asking for an equivalence just a plain function!
- However, this was the main obstacle of the formalisation of our proofs
- The difficulty: have to describe a map

$$\underbrace{\prod_{x:X} \underset{y:Y}{*} A(x,y)}_{?} \rightarrow \underset{y:Y}{*} \underset{x:X}{*} A(x,y)$$

Theorem 8

For any $X, Y : \mathbb{R}P^{\infty}$ and $A : X \times Y \to \mathcal{U}$, we have a function

$$\underset{x:X \ y:Y}{*} A(x,y) \rightarrow \underset{y:Y \ x:X}{*} A(x,y)$$

- We're not even asking for an equivalence just a plain function!
- However, this was the main obstacle of the formalisation of our proofs
- The difficulty: have to describe a map

$$\underbrace{\prod_{x:X} \underset{y:Y}{*} A(x,y)}_{?} \rightarrow \underset{y:Y}{*} \underset{x:X}{*} A(x,y)$$

• Over 2000 lines of code...

Conjecture 1

For $x : K_1$, we have $Sq^0(x) = x$

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited

Conjecture 1

For $x : K_1$, we have $Sq^0(x) = x$

• We have a proof sketch but no formalisation yet

Conjecture 1

For $x : K_1$, we have $Sq^0(x) = x$

- We have a proof sketch but no formalisation yet
- As Sq⁰ $\in \underbrace{H^1(\mathcal{K}_1)}_{\cong \mathbb{Z}/2}$, this is a Brunerie number

Conjecture 1

For $x : K_1$, we have $Sq^0(x) = x$

- We have a proof sketch but no formalisation yet
- As Sq⁰ $\in \underbrace{H^1(\mathcal{K}_1)}_{\cong \mathbb{Z}/2}$, this is a Brunerie number
- Does it compute?

Conjecture 1

For $x : K_1$, we have $Sq^0(x) = x$

- We have a proof sketch but no formalisation yet
- As $Sq^0 \in \underbrace{H^1(\mathcal{K}_1)}_{\cong \mathbb{Z}/2}$, this is a Brunerie number
- Does it compute? Absolutely not.

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited

- Idea: Σ -axiom + (b) + (c) suggest a recursive definition
- Let's try to define $\operatorname{Sq}_i^n : K_i \to_* K_{i+n}$ by induction on *i*.

•
$$i = 0$$
. Define Sq₀⁰(x) = x and Sq₀^{n>0}(x) = 0.

• i > 0. Define

$$\mathsf{Sq}_i^n(x) = \begin{cases} 0 & \text{if } n > i \\ x^2 & \text{if } n = i \\ ? & \text{if } n < i \end{cases}$$

- What to do for '?'.
- Need: map $K_i \rightarrow_{\star} K_{i+n}$ for n < i.

Theorem 9

When n-1 < i, the map $(K_i \rightarrow_{\star} K_{i+n}) \xrightarrow{\Omega} (\Omega K_i \rightarrow_{\star} \Omega K_{i+n})$ is an equivalence.

Theorem 10 (Wärn '23)

When n - 1 = i, the fibre of $(K_i \to_{\star} K_{i+n}) \xrightarrow{\Omega} (\Omega K_i \to_{\star} \Omega K_{i+n})$ over the dashed map below is contractible.

$$\begin{array}{c} \Omega K_i & \cdots & \Omega K_{n+i} \\ \uparrow & & \uparrow \\ K_{i-1} & & & \downarrow \\ \hline & & & & K_{n+i-1} \end{array}$$

• So, enough to construct $\Omega(Sq^n) : \Omega K_i \to_{\star} \Omega K_{i+n}$

Done!

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited

Image: A math a math

문 문 문

$$\begin{array}{ccc} \Omega K_{i} & \xrightarrow{\Omega(\operatorname{Sq}^{n}i)} & \Omega K_{i+n} \\ & \downarrow & & \downarrow^{\wr} \\ K_{i-1} & \xrightarrow{\operatorname{Sq}^{n}_{i-1}} & K_{i-1+n} \end{array}$$

Done!

- Pros:
 - Very HoTT construction
 - Σ -axiom, (b), (c) hold by definition
 - (a) follows easily too

ъ.

э

Done!

- Pros:
 - Very HoTT construction
 - Σ -axiom, (b), (c) hold by definition
 - (a) follows easily too

• Cons:

- Cartan formula not obvious...
- Adem relations ???

- Finish formalisation of the details...
- Develop the theory of Steenrod algebras in HoTT
- Higher Steenrod powers?
 - Very unclear whether our techniques generalise

Thanks for listening (again)

- Guillaume Brunerie. "The Steenrod squares in homotopy type theory". Abstract at 23rd International Conference on Types for Proofs and Programs (TYPES 2017). 2016. URL: https://types2017.elte.hu/proc.pdf#page=45.
- [2] Ulrik Buchholtz. Unordered Pairs in Homotopy Type Theory. 2021. URL: https://ulrikbuchholtz.dk/pairs.pdf.
- Ulrik Buchholtz and Egbert Rijke. "The real projective spaces in homotopy type theory". In: June 2017, pp. 1–8. DOI: 10.1109/LICS.2017.8005146.
- [4] Axel Ljungström and Anders Mörtberg. Computational Synthetic Cohomology Theory in Homotopy Type Theory. 2024. arXiv: 2401.16336 [math.AT].

