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Introduction

o Let's leave the cellular world

@ This talk is about the Steenrod squares, a construction on the
usual ‘representable’ cohomology theory in HoTT.

@ Originally investigated by Brunerie [1]. The goal of this project
is to finish what he started.
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Cohomology in HoTT: a crash course

@ Recall: we define the nth cohomoloy group of a space X with
coefficients in an abelian group G by

H(A, G) = [| X = K(G,n) o
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H(A, G) = [| X = K(G,n) o

e Above, K(G, n) denotes the nth Eilenberg-MacLane space
(over G). It:

o is (n — 1)-connected,
o comes with equivalence K(G,n) = QK(G,n+1)
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Cohomology in HoTT: a crash course

@ Recall: we define the nth cohomoloy group of a space X with
coefficients in an abelian group G by

H(A, G) = [| X = K(G,n) o

e Above, K(G, n) denotes the nth Eilenberg-MacLane space
(over G). It:
o is (n — 1)-connected,
o comes with equivalence K(G,n) = QK(G,n+1)
o satisfies K(G,0) ~ G,
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Cohomology in HoTT: a crash course

@ Recall: we define the nth cohomoloy group of a space X with
coefficients in an abelian group G by

H(A, G) = [| X = K(G,n) o

e Above, K(G, n) denotes the nth Eilenberg-MacLane space
(over G). It:

is (n — 1)-connected,

comes with equivalence K(G,n) = QK(G,n+1)

satisfies K(G,0) ~ G,

comes with an invertible and commutative H-space structure

+:K(G,n) x K(G,n) = K(G, n)
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Cohomology in HoTT: a crash course

@ Recall: we define the nth cohomoloy group of a space X with
coefficients in an abelian group G by

H(A, G) = [| X = K(G,n) o

e Above, K(G, n) denotes the nth Eilenberg-MacLane space
(over G). It:

is (n — 1)-connected,

comes with equivalence K(G,n) = QK(G,n+1)

satisfies K(G,0) ~ G,

comes with an invertible and commutative H-space structure

+:K(G,n) x K(G,n) = K(G, n)

and, when G is a (comm) ring R , a graded multiplication

—: K(R,n) x K(R,m) = K(R,n+ m) called the cup product.
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Cohomology in HoTT: a crash course

@ Recall: we define the nth cohomoloy group of a space X with
coefficients in an abelian group G by

H(A, G) = [| X = K(G,n) o

e Above, K(G, n) denotes the nth Eilenberg-MacLane space
(over G). It:

is (n — 1)-connected,

comes with equivalence K(G,n) = QK(G,n+1)

satisfies K(G,0) ~ G,

comes with an invertible and commutative H-space structure
+:K(G,n) x K(G,n) = K(G, n)

and, when G is a (comm) ring R , a graded multiplication

—: K(R,n) x K(R,m) = K(R,n+ m) called the cup product.

@ These operations turn H*(A, R) into a graded commutative
ring with addition + and multiplication —.
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e H* is useful for distinguishing between spaces...
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Steenrod squares

e H* is useful for distinguishing between spaces...

@ ...but it can happen H*(X, R) = H*(Y, R) despite X £ Y.

e Fortunately, when considering R = Z /27, there are further
invariants: the Steenrod squares.

@ The Steenrod squares: a set of cohomology operations
Sq": H(X,Z/27) — H'*"(X,Z/27)

@ Brunerie [1] defined these in HoTT but didn't prove any of
their defining properties

@ In this talk, we will revisit Brunerie's definition and present
proofs of several of their key properties.

Axel Ljungstrom, David Wirn



The Steenrod Squares, axiomatically

e Notation: Let K, := K(Z/2Z, n) and
H"(X) := H"(X,Z/2Z)
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The Steenrod Squares, axiomatically

e Notation: Let K, := K(Z/2Z, n) and
H"(X) := H"(X,Z/27)
@ As usual in HoTT, we prefer to do all the work on the level of

Eilenberg-MacLane spaces and then lift everything to
cohomology groups/rings.

Theorem 1 (partially proved)

There is a family of pointed maps Sqf’,-) : Ki =% Kign s.t.
(a) Sqa°(x )—X

(b) Sai=x2  (=x—x)

(c) Sa?(x)=0ifn>i
(d)

d The Cartan formula

Sq"(x —y)= Y Sq"(x) — Sq“(y)
m+k=n
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The Steenrod Squares, axiomatically

Theorem 1 (ctd.)

Furthermore, Sq" respects suspension

K; Sq” > i+
1 4 I+n

Zl lz (X-axiom)
Q(Kit1) —ace) Q(Kit1+n)

and the Adem relations: when i < 2j, we have

- /2] oy N
Sq'oSdl(x) = ) (J . ) Sq' 7% 0 Sq¥(x)
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o Let us simply write X : RP°° and take the second projection
implicit.
e There is a pointed equivalence t : RP*>® ~, Kj
e Given X : RP* and n: X — N, we may form its sum n: N.

Axel Ljungstrom, David Wirn



Unordered stuff

Brunerie constructed the squares using unordered smash
products

For technical reasons, we will give an equivalent construction
using unordered joins
Recall (cf. Buchholtz [2] and B. & Rijke [3]):
o RP® :=3%" . [|A~2]|_; (pointed by 2).
o Let us simply write X : RP°° and take the second projection
implicit.

e There is a pointed equivalence t : RP*>® ~, Kj
e Given X : RP* and n: X — N, we may form its sum n: N.

o |dea: obtain Steenrod squares as a special case of an
‘unordered cup product’
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o Let X :RP* and A: X — U. We call the type N,.xA(x) the
type of unordered pairs of A (rel. X)
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o Let X :RP* and A: X — U. We call the type N,.xA(x) the
type of unordered pairs of A (rel. X)

@ Have: an ordered cup product

= M2 Knx) = Kn(o)+n(1)

Axel Ljungstrdm, David Warn



o Let X :RP* and A: X — U. We call the type N,.xA(x) the
type of unordered pairs of A (rel. X)

@ Have: an ordered cup product
~ I_IX:QI{n(x) — Kn(0)+n(1)
e Want: an unordered cup product

I_IXSXKH(X) — KZn
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o Let X :RP* and A: X — U. We call the type N,.xA(x) the
type of unordered pairs of A (rel. X)

@ Have: an ordered cup product
—: M2 Koy = Kn(o)+n(1)
e Want: an unordered cup product
My:x Knx) = Ksn

@ To get this, we need to endow this function space with more
structure. To this end, we'll use joins.
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Definition 2
Given X : RP* and A: X — U, the unordered join of A (rel.
X) is the pushout

X X I_I(X:X)A(X) — I_I(X:X)A(X)

l -

ZX:XA(X) I *X;X A(X)

This coincides with the usual join when X is 2
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Definition 3
Given X : RP* and A: X — U, and B : U,, we define the type of
bi-homs by

A-XB:= > isBiHomx(F)
F:N,.xA(x)—B

where

isBiHomx(F) := (f : M.xA(x)) — >|)<<(f(x) = *A(X)) — F(f) =%*p
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@ The point: (A —% B) =~ (Ag A A1 = B)

Axel Ljungstrdm, David Wirn



@ The point: (A —% B) =~ (Ag A A1 = B)
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@ The point: (A —% B) =~ (Ag A A1 = B)
@ The type of bi-homs over K,,_) for some n: X — N has some
nice properties:
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@ The point: (A —% B) =~ (Ag A A1 = B)
@ The type of bi-homs over K,,_) for some n: X — N has some
nice properties:

Proposition 4
(Kn(—) —>i< K):n) = Z/2

Proposition 5

The unique non-trivial element ~~.x : K_) —X Ky, is simply
the cup product when X is 2
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@ The point: (A —% B) =~ (Ag A A1 = B)
@ The type of bi-homs over K,,_) for some n: X — N has some
nice properties:

Proposition 4
(Kn(—) —>i< K):n) = Z/2

Proposition 5
The unique non-trivial element ~~.x : K_) —X Ky, is simply
the cup product when X is 2

o Notation: Given f : T,.x Kj (), let us use ~—.x f(x) to
denote the application of the underlying function of ~—.x to
f.
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o A total steenrod square is obtained by taking the ‘diagonal’ of
~x:X Kn(—) _>i< KZn-
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o A total steenrod square is obtained by taking the ‘diagonal’ of
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o Let m: N, a: K, and X : RP*°. Consider n: X — N and
f i Mp(x)Kn(x) defined by

n(x)=m and f(x)=a
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o Let m: N, a: K, and X : RP*°. Consider n: X — N and
f i Mp(x)Kn(x) defined by

n(x)=m and f(x)=a
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o A total steenrod square is obtained by taking the ‘diagonal’ of
~x:X Kn(—) _>i< KZn-

o Let m: N, a: K, and X : RP*°. Consider n: X — N and
f i Mp(x)Kn(x) defined by

n(x)=m and f(x)=a

We have ~—,.x f(x) : Kom

@ Thus, we have constructed a map S = K;; =+ (RP*>® — Kom)
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o A total steenrod square is obtained by taking the ‘diagonal’ of
—ex Kooy 2% K.

o Let m: N, a: K, and X : RP*°. Consider n: X — N and
f i Mp(x)Kn(x) defined by

n(x)=m and f(x)=a
We have ~—,.x f(x) : Kom
@ Thus, we have constructed a map S = K;; =+ (RP*>® — Kom)

Theorem 6 (L., Mortberg [4])
The map e : Ko x -+ x Ky = (RP> — Ki,) defined by

e(xg,---,Xn) == Ay. Z t(y) — xp_i
i=0

is an equivalence
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@ Via this equivalence, we get a total square Sq via
post-composition

K ————— RP™ = Kop,

I~ iz
Sq S~A

K0><---><K2m
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@ Via this equivalence, we get a total square Sq via
post-composition

K ————— RP™ = Kop,

I~ lz
Sq S~A

K0><---><K2m

@ ...and thus, we can define our Steenrod Squares
Sq" : K — Kman for 0 < n < mvia

Prmin

KmL> KQX-~~XK2m*> Km+n

and Sq"(x) = 0 otherwise.
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@ As Sq" merely is a special case of the unordered cup product
~xx Koo —X Ks~p, we may translate statements about
Sq" to statements concerning ~—',.x.
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@ In particular, both the Cartan formula and the Adem relations
turn out to be special cases of the following theorem
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@ As Sq" merely is a special case of the unordered cup product
~xx Koo —X Ks~p, we may translate statements about
Sq" to statements concerning ~—',.x.

@ In particular, both the Cartan formula and the Adem relations
turn out to be special cases of the following theorem

Forany X, Y :RP* and n: X x Y — N and any unordered

quadruple f : M.xM,.y K, we have

(x.y)

~— — f = ~— —
xX y:Y (X,_)/) v:Y xX (X7y)
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@ With our construction of Sq” in terms of unordered joins, the
theorem turns out to be a special case of the following
trivial-looking thing

Forany X, Y : RP> and A: X x Y — U, we have a function

% K A(x,y) = K K A(x,y)

x:XyY y:Y x: X

@ We're not even asking for an equivalence — just a plain
function!
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our proofs
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@ With our construction of Sq” in terms of unordered joins, the
theorem turns out to be a special case of the following
trivial-looking thing

Forany X, Y : RP> and A: X x Y — U, we have a function

% K A(x,y) = K K A(x,y)

x:XyY y:Y x: X

@ We're not even asking for an equivalence — just a plain
function!
@ However, this was the main obstacle of the formalisation of
our proofs
e The difficulty: have to describe a map
Xx*Axy)—>>l<>l<Axy

y:Y x: X

%,_/
?
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@ With our construction of Sq” in terms of unordered joins, the
theorem turns out to be a special case of the following
trivial-looking thing

Forany X, Y : RP> and A: X x Y — U, we have a function

% K A(x,y) = K K A(x,y)

x:XyY y:Y x: X

@ We're not even asking for an equivalence — just a plain
function!

@ However, this was the main obstacle of the formalisation of
our proofs

e The difficulty: have to describe a map

Xx>l<Axy)—>>l<>l<Axy
y:Y x: X

%,_/
?

@ Over 2000 lines of code...



@ Remaining axioms: either by definition or can be shown to
follow from the following conjecture

For x : K1, we have Sq°(x) = x
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@ Remaining axioms: either by definition or can be shown to
follow from the following conjecture

Conjecture 1

For x : K1, we have Sq°(x) = x

@ We have a proof sketch but no formalisation yet
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@ Remaining axioms: either by definition or can be shown to
follow from the following conjecture

For x : K1, we have Sq°(x) = x

@ We have a proof sketch but no formalisation yet
o As Sq° € H(K), this is a Brunerie number
~——

~7/2
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@ Remaining axioms: either by definition or can be shown to
follow from the following conjecture

For x : K1, we have Sq°(x) = x

@ We have a proof sketch but no formalisation yet
o As Sq° € H(K), this is a Brunerie number
~——
~7/2
@ Does it compute?
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@ Remaining axioms: either by definition or can be shown to
follow from the following conjecture

For x : K1, we have Sq°(x) = x

@ We have a proof sketch but no formalisation yet
o As Sq° € H(K), this is a Brunerie number
~——
~7/2
@ Does it compute? Absolutely not.
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@ Idea: X-axiom + (b) + (c) suggest a recursive definition
o Let's try to define Sq : Ki —, Kitn by induction on /.
o i =0. Define Sq3(x) = x and Sqj~%(x) = 0.
@ /i > 0. Define

0 ifn>i

Saf(x) =4 x%® ifn=i

? if n<i

e What to do for ‘7"

Need: map K; —, Ky, for n < i.
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When n — 1 < i, the map (Ki —+« Kitn) LLN (QK; —4« QKiypn) is an
equivalence.

Theorem 10 (Warn '23)

When n — 1 = i, the fibre of (K; =4 Kitn) 2, (QK; =+ QK1)
over the dashed map below is contractible.

QK,‘ *********** > QKn+,
zT Tz
Ki-i ——— Knyi-1

@ So, enough to construct Q(Sq") : QK; —« QKiip
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QK; -1l » QKiyn
zl lz
Kiigy ——— Ki—11n

Sai_,

Donel
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QK; -1l » QKitn
zl lz
Kicit — 7 Ki—1+n
Sqi—l
Donel
@ Pros:

o Very HoTT construction
e Y-axiom, (b), (c) hold by definition
o (a) follows easily too
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Donel
e Pros:
o Very HoTT construction
e Y-axiom, (b), (c) hold by definition
o (a) follows easily too
e Cons:

e Cartan formula — not obvious...
o Adem relations — 777
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Future/Ongoing work

@ Finish formalisation of the details...

@ Develop the theory of Steenrod algebras in HoTT
@ Higher Steenrod powers?
e Very unclear whether our techniques generalise
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Thanks for listening (again)
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