The Steenrod Squares in HoTT Revisited

Axel Ljungström ${ }^{1}$, David Wärn²

${ }^{1}$ Stockholm University, ${ }^{2}$ University of Gothenburg
April 3, 2024

Introduction

- Let's leave the cellular world
- This talk is about the Steenrod squares, a construction on the usual 'representable' cohomology theory in HoTT.
- Originally investigated by Brunerie [1]. The goal of this project is to finish what he started.

Cohomology in HoTT: a crash course

- Recall: we define the nth cohomoloy group of a space X with coefficients in an abelian group G by

$$
H^{n}(A, G)=\|X \rightarrow K(G, n)\|_{0}
$$

Cohomology in HoTT: a crash course

- Recall: we define the nth cohomoloy group of a space X with coefficients in an abelian group G by

$$
H^{n}(A, G)=\|X \rightarrow K(G, n)\|_{0}
$$

- Above, $K(G, n)$ denotes the nth Eilenberg-MacLane space (over G). It:

Cohomology in HoTT: a crash course

- Recall: we define the nth cohomoloy group of a space X with coefficients in an abelian group G by

$$
H^{n}(A, G)=\|X \rightarrow K(G, n)\|_{0}
$$

- Above, $K(G, n)$ denotes the nth Eilenberg-MacLane space (over G). It:
- is $(n-1)$-connected,

Cohomology in HoTT: a crash course

- Recall: we define the nth cohomoloy group of a space X with coefficients in an abelian group G by

$$
H^{n}(A, G)=\|X \rightarrow K(G, n)\|_{0}
$$

- Above, $K(G, n)$ denotes the nth Eilenberg-MacLane space (over G). It:
- is $(n-1)$-connected,
- comes with equivalence $K(G, n) \xrightarrow{\sigma} \Omega K(G, n+1)$

Cohomology in HoTT: a crash course

- Recall: we define the nth cohomoloy group of a space X with coefficients in an abelian group G by

$$
H^{n}(A, G)=\|X \rightarrow K(G, n)\|_{0}
$$

- Above, $K(G, n)$ denotes the nth Eilenberg-MacLane space (over G). It:
- is $(n-1)$-connected,
- comes with equivalence $K(G, n) \xrightarrow{\sigma} \Omega K(G, n+1)$
- satisfies $K(G, 0) \simeq G$,

Cohomology in HoTT: a crash course

- Recall: we define the nth cohomoloy group of a space X with coefficients in an abelian group G by

$$
H^{n}(A, G)=\|X \rightarrow K(G, n)\|_{0}
$$

- Above, $K(G, n)$ denotes the nth Eilenberg-MacLane space (over G). It:
- is $(n-1)$-connected,
- comes with equivalence $K(G, n) \xrightarrow{\sigma} \Omega K(G, n+1)$
- satisfies $K(G, 0) \simeq G$,
- comes with an invertible and commutative H -space structure $+: K(G, n) \times K(G, n) \rightarrow K(G, n)$

Cohomology in HoTT: a crash course

- Recall: we define the nth cohomoloy group of a space X with coefficients in an abelian group G by

$$
H^{n}(A, G)=\|X \rightarrow K(G, n)\|_{0}
$$

- Above, $K(G, n)$ denotes the nth Eilenberg-MacLane space (over G). It:
- is $(n-1)$-connected,
- comes with equivalence $K(G, n) \xrightarrow{\sigma} \Omega K(G, n+1)$
- satisfies $K(G, 0) \simeq G$,
- comes with an invertible and commutative H -space structure $+: K(G, n) \times K(G, n) \rightarrow K(G, n)$
- and, when G is a (comm) ring R, a graded multiplication $\smile: K(R, n) \times K(R, m) \rightarrow K(R, n+m)$ called the cup product.

Cohomology in HoTT: a crash course

- Recall: we define the nth cohomoloy group of a space X with coefficients in an abelian group G by

$$
H^{n}(A, G)=\|X \rightarrow K(G, n)\|_{0}
$$

- Above, $K(G, n)$ denotes the nth Eilenberg-MacLane space (over G). It:
- is $(n-1)$-connected,
- comes with equivalence $K(G, n) \xrightarrow{\sigma} \Omega K(G, n+1)$
- satisfies $K(G, 0) \simeq G$,
- comes with an invertible and commutative H -space structure $+: K(G, n) \times K(G, n) \rightarrow K(G, n)$
- and, when G is a (comm) ring R, a graded multiplication $\smile: K(R, n) \times K(R, m) \rightarrow K(R, n+m)$ called the cup product.
- These operations turn $H^{*}(A, R)$ into a graded commutative ring with addition + and multiplication \smile.

Steenrod squares

- H^{*} is useful for distinguishing between spaces...

Steenrod squares

- H^{*} is useful for distinguishing between spaces...
- ...but it can happen $H^{*}(X, R) \cong H^{*}(Y, R)$ despite $X \nsucceq Y$.

Steenrod squares

- H^{*} is useful for distinguishing between spaces...
- ...but it can happen $H^{*}(X, R) \cong H^{*}(Y, R)$ despite $X \nsucceq Y$.
- Fortunately, when considering $R=\mathbb{Z} / 2 \mathbb{Z}$, there are further invariants: the Steenrod squares.

Steenrod squares

- H^{*} is useful for distinguishing between spaces...
- ...but it can happen $H^{*}(X, R) \cong H^{*}(Y, R)$ despite $X \nsucceq Y$.
- Fortunately, when considering $R=\mathbb{Z} / 2 \mathbb{Z}$, there are further invariants: the Steenrod squares.
- The Steenrod squares: a set of cohomology operations $S q^{n}: H^{i}(X, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{i+n}(X, \mathbb{Z} / 2 \mathbb{Z})$

Steenrod squares

- H^{*} is useful for distinguishing between spaces...
- ...but it can happen $H^{*}(X, R) \cong H^{*}(Y, R)$ despite $X \nsucceq Y$.
- Fortunately, when considering $R=\mathbb{Z} / 2 \mathbb{Z}$, there are further invariants: the Steenrod squares.
- The Steenrod squares: a set of cohomology operations Sq ${ }^{n}: H^{i}(X, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{i+n}(X, \mathbb{Z} / 2 \mathbb{Z})$
- Brunerie [1] defined these in HoTT but didn't prove any of their defining properties

Steenrod squares

- H^{*} is useful for distinguishing between spaces...
- ...but it can happen $H^{*}(X, R) \cong H^{*}(Y, R)$ despite $X \nsucceq Y$.
- Fortunately, when considering $R=\mathbb{Z} / 2 \mathbb{Z}$, there are further invariants: the Steenrod squares.
- The Steenrod squares: a set of cohomology operations Sq ${ }^{n}: H^{i}(X, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{i+n}(X, \mathbb{Z} / 2 \mathbb{Z})$
- Brunerie [1] defined these in HoTT but didn't prove any of their defining properties
- In this talk, we will revisit Brunerie's definition and present proofs of several of their key properties.

The Steenrod Squares, axiomatically

- Notation: Let $K_{n}:=K(\mathbb{Z} / 2 \mathbb{Z}, n)$ and $H^{n}(X):=H^{n}(X, \mathbb{Z} / 2 \mathbb{Z})$

The Steenrod Squares, axiomatically

- Notation: Let $K_{n}:=K(\mathbb{Z} / 2 \mathbb{Z}, n)$ and $H^{n}(X):=H^{n}(X, \mathbb{Z} / 2 \mathbb{Z})$
- As usual in HoTT, we prefer to do all the work on the level of Eilenberg-MacLane spaces and then lift everything to cohomology groups/rings.

The Steenrod Squares, axiomatically

- Notation: Let $K_{n}:=K(\mathbb{Z} / 2 \mathbb{Z}, n)$ and $H^{n}(X):=H^{n}(X, \mathbb{Z} / 2 \mathbb{Z})$
- As usual in HoTT, we prefer to do all the work on the level of Eilenberg-MacLane spaces and then lift everything to cohomology groups/rings.

Theorem 1 (partially proved)

There is a family of pointed maps $\mathrm{Sq}_{(i)}^{n}: K_{i} \rightarrow_{\star} K_{i+n}$ s.t.
(a) $\mathrm{Sq}^{0}(x)=x$
(b) $\mathrm{Sq}_{n}^{n}=x^{2} \quad(:=x \smile x)$
(c) $\mathrm{Sq}_{i}^{n}(x)=0$ if $n>i$
(d) The Cartan formula

$$
\mathrm{Sq}^{n}(x \smile y)=\sum_{m+k=n} \mathrm{Sq}^{m}(x) \smile \mathrm{Sq}^{k}(y)
$$

The Steenrod Squares, axiomatically

Theorem 1 (ctd.)

Furthermore, Sq^{n} respects suspension

and the Adem relations: when $i<2 j$, we have

$$
\mathrm{Sq}^{i} \circ \mathrm{Sq}^{j}(x)=\sum_{k=0}^{\lfloor i / 2\rfloor}\binom{j-k-1}{i-2 k}_{\bmod 2} \mathrm{Sq}^{i+j-k} \circ \mathrm{Sq}^{k}(x)
$$

Table of Contents

(1) A Brunerie style construction

(2) A direct construction

Unordered stuff

- Brunerie constructed the squares using unordered smash products

Unordered stuff

- Brunerie constructed the squares using unordered smash products
- For technical reasons, we will give an equivalent construction using unordered joins

Unordered stuff

- Brunerie constructed the squares using unordered smash products
- For technical reasons, we will give an equivalent construction using unordered joins
- Recall (cf. Buchholtz [2] and B. \& Rijke [3]):

Unordered stuff

- Brunerie constructed the squares using unordered smash products
- For technical reasons, we will give an equivalent construction using unordered joins
- Recall (cf. Buchholtz [2] and B. \& Rijke [3]):
- $\mathbb{R} P^{\infty}:=\sum_{A: \mathcal{U}}\|A \simeq \mathbb{Q}\|_{-1}$ (pointed by \mathbb{P}).
- Let us simply write $X: \mathbb{R} P^{\infty}$ and take the second projection implicit.

Unordered stuff

- Brunerie constructed the squares using unordered smash products
- For technical reasons, we will give an equivalent construction using unordered joins
- Recall (cf. Buchholtz [2] and B. \& Rijke [3]):
- $\mathbb{R} P^{\infty}:=\sum_{A: \mathcal{U}}\|A \simeq \mathbb{Q}\|_{-1}$ (pointed by \mathbb{P}).
- Let us simply write $X: \mathbb{R} P^{\infty}$ and take the second projection implicit.
- There is a pointed equivalence $t: \mathbb{R} P^{\infty} \simeq_{\star} K_{1}$

Unordered stuff

- Brunerie constructed the squares using unordered smash products
- For technical reasons, we will give an equivalent construction using unordered joins
- Recall (cf. Buchholtz [2] and B. \& Rijke [3]):
- $\mathbb{R} P^{\infty}:=\sum_{A: \mathcal{U}}\|A \simeq \mathbb{Q}\|_{-1}$ (pointed by \mathbb{P}).
- Let us simply write $X: \mathbb{R} P^{\infty}$ and take the second projection implicit.
- There is a pointed equivalence $t: \mathbb{R} P^{\infty} \simeq_{\star} K_{1}$
- Given $X: \mathbb{R} P^{\infty}$ and $n: X \rightarrow \mathbb{N}$, we may form its sum $\Sigma n: \mathbb{N}$.

Unordered stuff

- Brunerie constructed the squares using unordered smash products
- For technical reasons, we will give an equivalent construction using unordered joins
- Recall (cf. Buchholtz [2] and B. \& Rijke [3]):
- $\mathbb{R} P^{\infty}:=\sum_{A: \mathcal{U}}\|A \simeq \mathbb{Q}\|_{-1}$ (pointed by \mathbb{P}).
- Let us simply write $X: \mathbb{R} P^{\infty}$ and take the second projection implicit.
- There is a pointed equivalence $t: \mathbb{R} P^{\infty} \simeq_{\star} K_{1}$
- Given $X: \mathbb{R} P^{\infty}$ and $n: X \rightarrow \mathbb{N}$, we may form its sum $\Sigma n: \mathbb{N}$.
- Idea: obtain Steenrod squares as a special case of an 'unordered cup product'
- Let $X: \mathbb{R} P^{\infty}$ and $A: X \rightarrow \mathcal{U}$. We call the type $\Pi_{x: X} A(x)$ the type of unordered pairs of $A(r e l . X)$
- Let $X: \mathbb{R} P^{\infty}$ and $A: X \rightarrow \mathcal{U}$. We call the type $\Pi_{x: X} A(x)$ the type of unordered pairs of A (rel. X)
- Have: an ordered cup product

$$
\smile: \Pi_{x: 2} K_{n(x)} \rightarrow K_{n(0)+n(1)}
$$

- Let $X: \mathbb{R} P^{\infty}$ and $A: X \rightarrow \mathcal{U}$. We call the type $\Pi_{x: X} A(x)$ the type of unordered pairs of A (rel. X)
- Have: an ordered cup product

$$
\smile: \Pi_{x: 2} K_{n(x)} \rightarrow K_{n(0)+n(1)}
$$

- Want: an unordered cup product

$$
\Pi_{x: X} K_{n(x)} \rightarrow K_{\Sigma n}
$$

- Let $X: \mathbb{R} P^{\infty}$ and $A: X \rightarrow \mathcal{U}$. We call the type $\Pi_{x: X} A(x)$ the type of unordered pairs of A (rel. X)
- Have: an ordered cup product

$$
\smile: \Pi_{x: 2} K_{n(x)} \rightarrow K_{n(0)+n(1)}
$$

- Want: an unordered cup product

$$
\Pi_{x: X} K_{n(x)} \rightarrow K_{\Sigma n}
$$

- To get this, we need to endow this function space with more structure. To this end, we'll use joins.

Definition 2

Given $X: \mathbb{R} P^{\infty}$ and $A: X \rightarrow \mathcal{U}$, the unordered join of A (rel. X) is the pushout

$$
\begin{aligned}
& X \times \Pi_{(x: X)} A(x) \Pi_{(x: X)} A(x) \\
& \stackrel{\downarrow}{\Sigma_{x: X} A(x)} \longrightarrow *_{x: x} A(x)
\end{aligned}
$$

This coincides with the usual join when X is 2

Definition 3

Given $X: \mathbb{R} P^{\infty}$ and $A: X \rightarrow \mathcal{U}_{\star}$ and $B: \mathcal{U}_{\star}$, we define the type of bi-homs by

$$
A \rightarrow_{\star}^{X} B:=\sum_{F: \Pi_{x: x} A(x) \rightarrow B} \text { isBiHom }_{X}(F)
$$

where
$\operatorname{isBiHom}_{X}(F):=\left(f: \Pi_{x: X} A(x)\right) \rightarrow \underset{x: X}{*}\left(f(x)=\star_{A(x)}\right) \rightarrow F(f)=\star_{B}$

- The point: $\left(A \rightarrow_{\star}^{2} B\right) \simeq\left(A_{0} \wedge A_{1} \rightarrow_{\star} B\right)$
- The point: $\left(A \rightarrow_{\star}^{2} B\right) \simeq\left(A_{0} \wedge A_{1} \rightarrow_{\star} B\right)$
- The type of bi-homs over $K_{n(-)}$ for some $n: X \rightarrow \mathbb{N}$ has some nice properties:
- The point: $\left(A \rightarrow_{\star}^{2} B\right) \simeq\left(A_{0} \wedge A_{1} \rightarrow_{\star} B\right)$
- The type of bi-homs over $K_{n(-)}$ for some $n: X \rightarrow \mathbb{N}$ has some nice properties:

Proposition 4

$\left(K_{n(-)} \rightarrow_{\star}^{X} K_{\Sigma n}\right) \simeq \mathbb{Z} / 2$

- The point: $\left(A \rightarrow_{\star}^{2} B\right) \simeq\left(A_{0} \wedge A_{1} \rightarrow_{\star} B\right)$
- The type of bi-homs over $K_{n(-)}$ for some $n: X \rightarrow \mathbb{N}$ has some nice properties:

Proposition 4
$\left(K_{n(-)} \rightarrow_{\star}^{X} K_{\Sigma n}\right) \simeq \mathbb{Z} / 2$

Proposition 5

The unique non-trivial element $\smile_{x: x}: K_{n(-)} \rightarrow_{\star}^{X} K_{\Sigma n}$ is simply the cup product when X is 2

- The point: $\left(A \rightarrow_{\star}^{2} B\right) \simeq\left(A_{0} \wedge A_{1} \rightarrow_{\star} B\right)$
- The type of bi-homs over $K_{n(-)}$ for some $n: X \rightarrow \mathbb{N}$ has some nice properties:

Proposition 4

$\left(K_{n(-)} \rightarrow_{\star}^{X} K_{\Sigma n}\right) \simeq \mathbb{Z} / 2$

Proposition 5

The unique non-trivial element $\smile_{x: x}: K_{n(-)} \rightarrow_{\star}^{X} K_{\Sigma n}$ is simply the cup product when X is 2

- Notation: Given $f: \Pi_{x: X} K_{n(x)}$, let us use $\smile_{x: X} f(x)$ to denote the application of the underlying function of $\smile_{x: X}$ to f.
- A total steenrod square is obtained by taking the 'diagonal' of $\smile_{x: X}: K_{n(-)} \rightarrow_{\star}^{X} K_{\Sigma n}$.
- A total steenrod square is obtained by taking the 'diagonal' of $\smile_{x: X}: K_{n(-)} \rightarrow_{\star}^{X} K_{\Sigma n}$.
- Let $m: \mathbb{N}, a: K_{m}$ and $X: \mathbb{R} P^{\infty}$. Consider $n: X \rightarrow \mathbb{N}$ and $f: \Pi_{n(x)} K_{n(x)}$ defined by

$$
n(x)=m \quad \text { and } \quad f(x)=a
$$

- A total steenrod square is obtained by taking the 'diagonal' of $\smile_{x: X}: K_{n(-)} \rightarrow_{\star}^{X} K_{\Sigma_{n}}$.
- Let $m: \mathbb{N}, a: K_{m}$ and $X: \mathbb{R} P^{\infty}$. Consider $n: X \rightarrow \mathbb{N}$ and $f: \Pi_{n(x)} K_{n(x)}$ defined by

$$
n(x)=m \quad \text { and } \quad f(x)=a
$$

We have $\smile_{x: X} f(x): K_{2 m}$

- A total steenrod square is obtained by taking the 'diagonal' of $\mathcal{C}_{x: X}: K_{n(-)} \rightarrow_{\star}^{X} K_{\Sigma n}$.
- Let $m: \mathbb{N}, a: K_{m}$ and $X: \mathbb{R} P^{\infty}$. Consider $n: X \rightarrow \mathbb{N}$ and $f: \Pi_{n(x)} K_{n(x)}$ defined by

$$
n(x)=m \quad \text { and } \quad f(x)=a
$$

We have $\smile_{x: x} f(x): K_{2 m}$

- Thus, we have constructed a map $S=K_{m} \rightarrow_{\star}\left(\mathbb{R} P^{\infty} \rightarrow K_{2 m}\right)$
- A total steenrod square is obtained by taking the 'diagonal' of $\mathcal{J}_{x: X}: K_{n(-)} \rightarrow_{\star}^{X} K_{\Sigma n}$.
- Let $m: \mathbb{N}, a: K_{m}$ and $X: \mathbb{R} P^{\infty}$. Consider $n: X \rightarrow \mathbb{N}$ and $f: \Pi_{n(x)} K_{n(x)}$ defined by

$$
n(x)=m \quad \text { and } \quad f(x)=a
$$

We have $\smile_{x: x} f(x): K_{2 m}$

- Thus, we have constructed a map $S=K_{m} \rightarrow_{\star}\left(\mathbb{R} P^{\infty} \rightarrow K_{2 m}\right)$

Theorem 6 (L., Mörtberg [4])

The map e : $K_{0} \times \cdots \times K_{m} \rightarrow\left(\mathbb{R} P_{n}^{\infty} \rightarrow K_{m}\right)$ defined by

$$
e\left(x_{0}, \ldots, x_{n}\right):=\lambda y \cdot \sum_{i=0}^{n} t(y)^{i} \smile x_{n-i}
$$

is an equivalence

- Via this equivalence, we get a total square $\widehat{\text { Sq }}$ via post-composition

- Via this equivalence, we get a total square $\widehat{\text { Sq }}$ via post-composition

- ...and thus, we can define our Steenrod Squares $\mathrm{Sq}^{n}: K_{m} \rightarrow K_{m+n}$ for $0 \leq n \leq m$ via

$$
K_{m} \xrightarrow{\sim} K_{0} \times \cdots \times K_{2 m} \xrightarrow{\mathrm{pr}_{m+n}} K_{m+n}
$$

and $\mathrm{Sq}^{n}(x)=0$ otherwise.

- As Sq^{n} merely is a special case of the unordered cup product $\smile_{x: x}: K_{n(-)} \rightarrow_{\star}^{X} K_{\sum n}$, we may translate statements about Sq^{n} to statements concerning $\smile_{x: X}$.
- As Sq n merely is a special case of the unordered cup product $\smile_{x: x}: K_{n(-)} \rightarrow_{\star}^{X} K_{\sum n}$, we may translate statements about Sq^{n} to statements concerning $\smile_{x: X}$.
- In particular, both the Cartan formula and the Adem relations turn out to be special cases of the following theorem
- As Sq n merely is a special case of the unordered cup product $\smile_{x: x}: K_{n(-)} \rightarrow_{\star}^{X} K_{\sum n}$, we may translate statements about Sq^{n} to statements concerning $\smile_{x: X}$.
- In particular, both the Cartan formula and the Adem relations turn out to be special cases of the following theorem

Theorem 7

For any $X, Y: \mathbb{R} P^{\infty}$ and $n: X \times Y \rightarrow \mathbb{N}$ and any unordered quadruple $f: \Pi_{x: X} \Pi_{y: Y} K_{n(x, y)}$, we have

$$
\underbrace{\smile}_{x: X} \underbrace{}_{y: Y} f(x, y)=\underbrace{\smile}_{y: Y} \underbrace{}_{x: X} f(x, y)
$$

- With our construction of Sq^{n} in terms of unordered joins, the theorem turns out to be a special case of the following trivial-looking thing

Theorem 8

For any $X, Y: \mathbb{R} P^{\infty}$ and $A: X \times Y \rightarrow \mathcal{U}$, we have a function

$$
\underset{x: X: X: Y}{*} A(x, y) \rightarrow \underset{y: Y x: X}{*} \underset{x}{*} A(x, y)
$$

- We're not even asking for an equivalence - just a plain function!
- With our construction of Sq^{n} in terms of unordered joins, the theorem turns out to be a special case of the following trivial-looking thing

Theorem 8

For any $X, Y: \mathbb{R} P^{\infty}$ and $A: X \times Y \rightarrow \mathcal{U}$, we have a function

$$
\underset{x: X: X: Y}{*} A(x, y) \rightarrow \underset{y: Y x: X}{*} \underset{x}{*} A(x, y)
$$

- We're not even asking for an equivalence - just a plain function!
- However, this was the main obstacle of the formalisation of our proofs
- With our construction of Sq^{n} in terms of unordered joins, the theorem turns out to be a special case of the following trivial-looking thing

Theorem 8

For any $X, Y: \mathbb{R} P^{\infty}$ and $A: X \times Y \rightarrow \mathcal{U}$, we have a function

$$
\underset{x: X: X: Y}{*} A(x, y) \rightarrow \underset{y: Y x: X}{*} \underset{x}{*} A(x, y)
$$

- We're not even asking for an equivalence - just a plain function!
- However, this was the main obstacle of the formalisation of our proofs
- The difficulty: have to describe a map

$$
\underbrace{\prod_{x: X} \underset{y: Y}{*} A(x, y)}_{?} \rightarrow \underset{y: Y x: X}{*} \underset{x}{*} A(x, y)
$$

- With our construction of Sq^{n} in terms of unordered joins, the theorem turns out to be a special case of the following trivial-looking thing

Theorem 8

For any $X, Y: \mathbb{R} P^{\infty}$ and $A: X \times Y \rightarrow \mathcal{U}$, we have a function

$$
\underset{x: X: X: Y}{*} A(x, y) \rightarrow \underset{y: Y x: X}{*} \underset{x}{*} A(x, y)
$$

- We're not even asking for an equivalence - just a plain function!
- However, this was the main obstacle of the formalisation of our proofs
- The difficulty: have to describe a map

$$
\underbrace{\prod_{x: X} \underset{y: Y}{*} A(x, y)} \rightarrow \underset{y: Y x: X}{*} \underset{x}{*} A(x, y)
$$

- Over 2000 lines of code...
- Remaining axioms: either by definition or can be shown to follow from the following conjecture

Conjecture 1

For x : K_{1}, we have $\mathrm{Sq}^{0}(x)=x$

- Remaining axioms: either by definition or can be shown to follow from the following conjecture

Conjecture 1

For x : K_{1}, we have $\mathrm{Sq}^{0}(x)=x$

- We have a proof sketch but no formalisation yet
- Remaining axioms: either by definition or can be shown to follow from the following conjecture

Conjecture 1

For x : K_{1}, we have $\mathrm{Sq}^{0}(x)=x$

- We have a proof sketch but no formalisation yet
- As $\mathrm{Sq}^{0} \in \underbrace{H^{1}\left(K_{1}\right)}_{\cong \mathbb{Z} / 2}$, this is a Brunerie number
- Remaining axioms: either by definition or can be shown to follow from the following conjecture

Conjecture 1

For x : K_{1}, we have $\mathrm{Sq}^{0}(x)=x$

- We have a proof sketch but no formalisation yet
- As $\mathrm{Sq}^{0} \in \underbrace{H^{1}\left(K_{1}\right)}_{\cong \mathbb{Z} / 2}$, this is a Brunerie number
- Does it compute?
- Remaining axioms: either by definition or can be shown to follow from the following conjecture

Conjecture 1

For x : K_{1}, we have $\mathrm{Sq}^{0}(x)=x$

- We have a proof sketch but no formalisation yet
- As $\mathrm{Sq}^{0} \in \underbrace{H^{1}\left(K_{1}\right)}_{\cong \mathbb{Z} / 2}$, this is a Brunerie number
- Does it compute? Absolutely not.

Table of Contents

(1) A Brunerie style construction

(2) A direct construction

- Idea: Σ-axiom $+(b)+(c)$ suggest a recursive definition
- Let's try to define $\mathrm{Sq}_{i}^{n}: K_{i} \rightarrow_{\star} K_{i+n}$ by induction on i.
- $i=0$. Define $\mathrm{Sq}_{0}^{0}(x)=x$ and $\mathrm{Sq}_{0}^{n>0}(x)=0$.
- $i>0$. Define

$$
\operatorname{Sq}_{i}^{n}(x)= \begin{cases}0 & \text { if } n>i \\ x^{2} & \text { if } n=i \\ ? & \text { if } n<i\end{cases}
$$

- What to do for '?'.
- Need: $\operatorname{map} K_{i} \rightarrow_{\star} K_{i+n}$ for $n<i$.

Theorem 9

When $n-1<i$, the $\operatorname{map}\left(K_{i} \rightarrow_{\star} K_{i+n}\right) \xrightarrow{\Omega}\left(\Omega K_{i} \rightarrow_{\star} \Omega K_{i+n}\right)$ is an equivalence.

Theorem 10 (Wärn '23)

When $n-1=i$, the fibre of $\left(K_{i} \rightarrow_{\star} K_{i+n}\right) \xrightarrow{\Omega}\left(\Omega K_{i} \rightarrow_{\star} \Omega K_{i+n}\right)$ over the dashed map below is contractible.

- So, enough to construct $\Omega\left(\mathrm{Sq}^{n}\right): \Omega K_{i} \rightarrow_{\star} \Omega K_{i+n}$

$$
\begin{aligned}
& \Omega K_{i} \quad \Omega\left(\mathrm{Sq}^{n} i\right){ }_{-->} \Omega K_{i+n} \\
& \downarrow \downarrow{ }^{2} \\
& K_{i-1} \xrightarrow[\mathrm{Sq}_{i-1}^{n}]{ } K_{i-1+n}
\end{aligned}
$$

Done!

$$
\begin{array}{cc}
\Omega K_{i} & \Omega\left(\mathrm{Sq}^{n} i\right) \\
\downarrow_{i-1} & \stackrel{\downarrow}{\mathrm{Sq}_{i-1}^{n}} \\
K_{i-1+n} & K_{i-1+n}
\end{array}
$$

Done!

- Pros:
- Very HoTT construction
- Σ-axiom, (b), (c) hold by definition
- (a) follows easily too

$$
\begin{array}{cc}
\Omega K_{i} & \Omega\left(\mathrm{Sq}^{n} i\right) \\
\downarrow_{i-1} & \stackrel{\downarrow}{\mathrm{Sq}_{i-1}^{n}} \\
& K_{i-1+n}
\end{array}
$$

Done!

- Pros:
- Very HoTT construction
- Σ-axiom, (b), (c) hold by definition
- (a) follows easily too
- Cons:
- Cartan formula - not obvious...
- Adem relations - ???

Future/Ongoing work

- Finish formalisation of the details...
- Develop the theory of Steenrod algebras in HoTT
- Higher Steenrod powers?
- Very unclear whether our techniques generalise

Thanks for listening (again)
[1] Guillaume Brunerie. "The Steenrod squares in homotopy type theory". Abstract at 23rd International Conference on Types for Proofs and Programs (TYPES 2017). 2016. URL: https://types2017.elte.hu/proc.pdf\#page=45.
[2] Ulrik Buchholtz. Unordered Pairs in Homotopy Type Theory. 2021. URL: https://ulrikbuchholtz.dk/pairs.pdf.
[3] Ulrik Buchholtz and Egbert Rijke. "The real projective spaces in homotopy type theory". In: June 2017, pp. 1-8. DOI: 10.1109/LICS. 2017.8005146.
[4] Axel Ljungström and Anders Mörtberg. Computational Synthetic Cohomology Theory in Homotopy Type Theory. 2024. arXiv: 2401.16336 [math.AT].

