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Introduction

Let’s leave the cellular world
This talk is about the Steenrod squares, a construction on the
usual ‘representable’ cohomology theory in HoTT.
Originally investigated by Brunerie [1]. The goal of this project
is to finish what he started.
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Cohomology in HoTT: a crash course

Recall: we define the nth cohomoloy group of a space X with
coefficients in an abelian group G by

Hn(A,G ) = ‖X → K (G , n) ‖0

Above, K (G , n) denotes the nth Eilenberg-MacLane space
(over G ). It:

is (n − 1)-connected,
comes with equivalence K (G , n)

σ−→ ΩK (G , n + 1)
satisfies K (G , 0) ' G ,
comes with an invertible and commutative H-space structure
+ : K (G , n)× K (G , n)→ K (G , n)
and, when G is a (comm) ring R , a graded multiplication
^: K (R, n)×K (R,m)→ K (R, n + m) called the cup product.

These operations turn H∗(A,R) into a graded commutative
ring with addition + and multiplication ^.
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Steenrod squares

H∗ is useful for distinguishing between spaces...

...but it can happen H∗(X ,R) ∼= H∗(Y ,R) despite X 6' Y .
Fortunately, when considering R = Z/2Z, there are further
invariants: the Steenrod squares.
The Steenrod squares: a set of cohomology operations
Sqn : H i (X ,Z/2Z)→ H i+n(X ,Z/2Z)

Brunerie [1] defined these in HoTT but didn’t prove any of
their defining properties
In this talk, we will revisit Brunerie’s definition and present
proofs of several of their key properties.
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The Steenrod Squares, axiomatically

Notation: Let Kn := K (Z/2Z, n) and
Hn(X ) := Hn(X ,Z/2Z)

As usual in HoTT, we prefer to do all the work on the level of
Eilenberg-MacLane spaces and then lift everything to
cohomology groups/rings.

Theorem 1 (partially proved)

There is a family of pointed maps Sqn(i) : Ki →? Ki+n s.t.

(a) Sq0(x) = x

(b) Sqnn = x2 (:= x ^ x)

(c) Sqni (x) = 0 if n > i

(d) The Cartan formula

Sqn(x ^ y) =
∑

m+k=n

Sqm(x) ^ Sqk(y)

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited



The Steenrod Squares, axiomatically

Notation: Let Kn := K (Z/2Z, n) and
Hn(X ) := Hn(X ,Z/2Z)

As usual in HoTT, we prefer to do all the work on the level of
Eilenberg-MacLane spaces and then lift everything to
cohomology groups/rings.

Theorem 1 (partially proved)

There is a family of pointed maps Sqn(i) : Ki →? Ki+n s.t.

(a) Sq0(x) = x

(b) Sqnn = x2 (:= x ^ x)

(c) Sqni (x) = 0 if n > i

(d) The Cartan formula

Sqn(x ^ y) =
∑

m+k=n

Sqm(x) ^ Sqk(y)

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited



The Steenrod Squares, axiomatically

Notation: Let Kn := K (Z/2Z, n) and
Hn(X ) := Hn(X ,Z/2Z)

As usual in HoTT, we prefer to do all the work on the level of
Eilenberg-MacLane spaces and then lift everything to
cohomology groups/rings.

Theorem 1 (partially proved)

There is a family of pointed maps Sqn(i) : Ki →? Ki+n s.t.

(a) Sq0(x) = x

(b) Sqnn = x2 (:= x ^ x)

(c) Sqni (x) = 0 if n > i

(d) The Cartan formula

Sqn(x ^ y) =
∑

m+k=n

Sqm(x) ^ Sqk(y)

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited



The Steenrod Squares, axiomatically

Theorem 1 (ctd.)

Furthermore, Sqn respects suspension

Ki Ki+n

Ω(Ki+1) Ω(Ki+1+n)

Sqn

∼

Ω(Sqn)
∼ (Σ-axiom)

and the Adem relations: when i < 2j , we have

Sqi ◦ Sqj(x) =

bi/2c∑
k=0

(
j − k − 1
i − 2k

)
mod 2

Sqi+j−k ◦ Sqk(x)
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Table of Contents

1 A Brunerie style construction

2 A direct construction
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Unordered stuff

Brunerie constructed the squares using unordered smash
products

For technical reasons, we will give an equivalent construction
using unordered joins
Recall (cf. Buchholtz [2] and B. & Rijke [3]):

RP∞ :=
∑

A:U ‖A ' 2 ‖−1 (pointed by 2).
Let us simply write X : RP∞ and take the second projection
implicit.

There is a pointed equivalence t : RP∞ '? K1
Given X : RP∞ and n : X → N, we may form its sum Σn : N.

Idea: obtain Steenrod squares as a special case of an
‘unordered cup product’
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Let X : RP∞ and A : X → U . We call the type Πx :XA(x) the
type of unordered pairs of A (rel. X)

Have: an ordered cup product

^: Πx :2Kn(x) → Kn(0)+n(1)

Want: an unordered cup product

Πx :XKn(x) → KΣn

To get this, we need to endow this function space with more
structure. To this end, we’ll use joins.
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Definition 2
Given X : RP∞ and A : X → U , the unordered join of A (rel.
X) is the pushout

X × Π(x :X )A(x) Π(x :X )A(x)

Σx :XA(x) ∗x :X A(x)

y

This coincides with the usual join when X is 2
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Definition 3
Given X : RP∞ and A : X → U? and B : U?, we define the type of
bi-homs by

A→X
? B :=

∑
F :Πx :XA(x)→B

isBiHomX (F )

where

isBiHomX (F ) := (f : Πx :XA(x))→∗
x :X

(f (x) = ?A(x))→ F (f ) = ?B
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The point: (A→2

? B) ' (A0 ∧ A1 →? B)

The type of bi-homs over Kn(−) for some n : X → N has some
nice properties:

Proposition 4

(Kn(−) →X
? KΣn) ' Z/2

Proposition 5

The unique non-trivial element^x :X : Kn(−) →X
? KΣn is simply

the cup product when X is 2

Notation: Given f : Πx :XKn(x), let us use^x :X f (x) to
denote the application of the underlying function of^x :X to
f .
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A total steenrod square is obtained by taking the ‘diagonal’ of
^x :X : Kn(−) →X

? KΣn.

Let m : N, a : Km and X : RP∞. Consider n : X → N and
f : Πn(x)Kn(x) defined by

n(x) = m and f (x) = a

We have^x :X f (x) : K2m

Thus, we have constructed a map S = Km →? (RP∞ → K2m)

Theorem 6 (L., Mörtberg [4])

The map e : K0 × · · · × Km → (RP∞ → Km) defined by

e(x0, . . . , xn) := λ y .
n∑

i=0

t(y)i ^ xn−i

is an equivalence
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f : Πn(x)Kn(x) defined by

n(x) = m and f (x) = a

We have^x :X f (x) : K2m

Thus, we have constructed a map S = Km →? (RP∞ → K2m)

Theorem 6 (L., Mörtberg [4])

The map e : K0 × · · · × Km → (RP∞ → Km) defined by

e(x0, . . . , xn) := λ y .
n∑
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t(y)i ^ xn−i

is an equivalence
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Via this equivalence, we get a total square Ŝq via
post-composition

Km RP∞ → K2m

K0 × · · · × K2m

Ŝq

∼

...and thus, we can define our Steenrod Squares
Sqn : Km → Km+n for 0 ≤ n ≤ m via

Km K0 × · · · × K2m Km+n
∼ prm+n

and Sqn(x) = 0 otherwise.

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited



Via this equivalence, we get a total square Ŝq via
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As Sqn merely is a special case of the unordered cup product
^x :X : Kn(−) →X

? K∑
n, we may translate statements about

Sqn to statements concerning^x :X .

In particular, both the Cartan formula and the Adem relations
turn out to be special cases of the following theorem

Theorem 7
For any X ,Y : RP∞ and n : X × Y → N and any unordered
quadruple f : Πx :XΠy :YKn(x ,y), we have

x̂ :X ŷ :Y
f (x , y) =

ŷ :Y x̂ :X
f (x , y)
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ŷ :Y x̂ :X
f (x , y)

Axel Ljungström, David Wärn The Steenrod Squares in HoTT Revisited



With our construction of Sqn in terms of unordered joins, the
theorem turns out to be a special case of the following
trivial-looking thing

Theorem 8
For any X ,Y : RP∞ and A : X × Y → U , we have a function

∗
x :X
∗
y :Y

A(x , y)→∗
y :Y
∗
x :X

A(x , y)

We’re not even asking for an equivalence – just a plain
function!

However, this was the main obstacle of the formalisation of
our proofs
The difficulty: have to describe a map

Πx :X∗
y :Y

A(x , y)︸ ︷︷ ︸
?

→∗
y :Y
∗
x :X

A(x , y)

Over 2000 lines of code...
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Remaining axioms: either by definition or can be shown to
follow from the following conjecture

Conjecture 1

For x : K1, we have Sq0(x) = x

We have a proof sketch but no formalisation yet
As Sq0 ∈ H1(K1)︸ ︷︷ ︸

∼=Z/2

, this is a Brunerie number

Does it compute?
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Remaining axioms: either by definition or can be shown to
follow from the following conjecture

Conjecture 1

For x : K1, we have Sq0(x) = x

We have a proof sketch but no formalisation yet
As Sq0 ∈ H1(K1)︸ ︷︷ ︸

∼=Z/2

, this is a Brunerie number

Does it compute? Absolutely not.
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2 A direct construction
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Idea: Σ-axiom + (b) + (c) suggest a recursive definition
Let’s try to define Sqni : Ki →? Ki+n by induction on i .
i = 0. Define Sq0

0(x) = x and Sqn>0
0 (x) = 0.

i > 0. Define

Sqni (x) =


0 if n > i

x2 if n = i

? if n < i

What to do for ‘?’.
Need: map Ki →? Ki+n for n < i .
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Theorem 9

When n − 1 < i , the map (Ki →? Ki+n)
Ω−→ (ΩKi →? ΩKi+n) is an

equivalence.

Theorem 10 (Wärn ’23)

When n − 1 = i , the fibre of (Ki →? Ki+n)
Ω−→ (ΩKi →? ΩKi+n)

over the dashed map below is contractible.

ΩKi ΩKn+i

Ki−1 Kn+i−1^

∼ ∼
So, enough to construct Ω(Sqn) : ΩKi →? ΩKi+n
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ΩKi ΩKi+n

Ki−1 Ki−1+n

Ω(Sqni)

∼

Sqni−1

∼

Done!

Pros:
Very HoTT construction
Σ-axiom, (b), (c) hold by definition
(a) follows easily too

Cons:
Cartan formula – not obvious...
Adem relations – ???
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Future/Ongoing work

Finish formalisation of the details...
Develop the theory of Steenrod algebras in HoTT
Higher Steenrod powers?

Very unclear whether our techniques generalise
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Thanks for listening (again)
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