Cellular Homology and the Cellular Approximation Theorem

Axel Ljungström¹, Anders Mörtberg¹, Loïc Pujet¹

¹Stockholm University

April 3, 2024

Axel Ljungström, Anders Mörtberg, Loïc Pujet

Cellular Homology and the Cellular Approximation Thm

• Cellular cohomology: defined and studied for the first time in HoTT by Buchholtz and Favonia [1]. They

-

- Cellular cohomology: defined and studied for the first time in HoTT by Buchholtz and Favonia [1]. They
 - defined the *n*th cellular cohomology group of a space X with a given CW structure, and

- Cellular cohomology: defined and studied for the first time in HoTT by Buchholtz and Favonia [1]. They
 - defined the *n*th cellular cohomology group of a space X with a given CW structure, and
 - showed that this definition agrees with the usual of $H^n(-, G)$ in HoTT and could thereby conclude

- Cellular cohomology: defined and studied for the first time in HoTT by Buchholtz and Favonia [1]. They
 - defined the *n*th cellular cohomology group of a space X with a given CW structure, and
 - showed that this definition agrees with the usual of $H^n(-, G)$ in HoTT and could thereby conclude
 - functoriality of their theory, and

= 200

- Cellular cohomology: defined and studied for the first time in HoTT by Buchholtz and Favonia [1]. They
 - defined the *n*th cellular cohomology group of a space X with a given CW structure, and
 - showed that this definition agrees with the usual of $H^n(-, G)$ in HoTT and could thereby conclude
 - functoriality of their theory, and
 - invariance of CW structure

= 990

- Cellular cohomology: defined and studied for the first time in HoTT by Buchholtz and Favonia [1]. They
 - defined the *n*th cellular cohomology group of a space X with a given CW structure, and
 - showed that this definition agrees with the usual of $H^n(-, G)$ in HoTT and could thereby conclude
 - functoriality of their theory, and
 - invariance of CW structure
 - What about homology? Can be defined in an entirely analogous manner. But...

A ∃ ► ∃ = < < <</p>

- Cellular cohomology: defined and studied for the first time in HoTT by Buchholtz and Favonia [1]. They
 - defined the *n*th cellular cohomology group of a space X with a given CW structure, and
 - showed that this definition agrees with the usual of $H^n(-, G)$ in HoTT and could thereby conclude
 - functoriality of their theory, and
 - invariance of CW structure
 - What about homology? Can be defined in an entirely analogous manner. But...
 - ...proving functoriality via another homology theory: difficult

underdeveloped in HoTT

▲ ■ ▶ ■ ■ ■ ● ● ● ●

- Cellular cohomology: defined and studied for the first time in HoTT by Buchholtz and Favonia [1]. They
 - defined the *n*th cellular cohomology group of a space X with a given CW structure, and
 - showed that this definition agrees with the usual of $H^n(-, G)$ in HoTT and could thereby conclude
 - functoriality of their theory, and
 - invariance of CW structure
 - What about homology? Can be defined in an entirely analogous manner. But...
 - ...proving functoriality via another homology theory: difficult

underdeveloped in HoTT

A ∃ ► ∃ = < < <</p>

• Maybe a more traditional line of attack via *cellular approximation* works?

- Cellular cohomology: defined and studied for the first time in HoTT by Buchholtz and Favonia [1]. They
 - defined the *n*th cellular cohomology group of a space X with a given CW structure, and
 - showed that this definition agrees with the usual of $H^n(-, G)$ in HoTT and could thereby conclude
 - functoriality of their theory, and
 - invariance of CW structure
 - What about homology? Can be defined in an entirely analogous manner. But...
 - ...proving functoriality via another homology theory: difficult

underdeveloped in HoTT

- Maybe a more traditional line of attack via *cellular approximation* works?
- This hinges on the theory of CW complexes being developed in HoTT. Interesting in its own right!

同 ト イヨト イヨト ヨヨ ののの

Our primary contributions are

- Proofs of (constructive versions of) the cellular approximation theorem(s) in HoTT
- The construction of a functorial homology theory (à la Buchholtz-Favonia) on the wild category of CW complexes.

A CW skeleton X_{\bullet} is

• an infinite sequence of types and maps $(X_{-1} \xrightarrow{\text{incl}_{-1}} X_0 \xrightarrow{\text{incl}_0} X_1 \xrightarrow{\text{incl}_1} \dots)$ equipped with

A CW skeleton X_{\bullet} is

• an infinite sequence of types and maps $(X_{-1} \xrightarrow{\text{incl}_{-1}} X_0 \xrightarrow{\text{incl}_0} X_1 \xrightarrow{\text{incl}_1} \dots)$ equipped with • $c : \mathbb{N} \to \mathbb{N}$

• c(n) = 'number of *n*-cells'

A CW skeleton X_{\bullet} is

• an infinite sequence of types and maps $(X_{-1} \xrightarrow{\text{incl}_{-1}} X_0 \xrightarrow{\text{incl}_0} X_1 \xrightarrow{\text{incl}_1} \dots)$ equipped with • $c : \mathbb{N} \to \mathbb{N}$

• c(n) = 'number of *n*-cells'

• attaching maps $\alpha_i: S^i \times Fin(c_{i+1}) \to X_i$ for $i \ge -1$

A CW skeleton X_{\bullet} is

- an infinite sequence of types and maps $(X_{-1} \xrightarrow{\text{incl}_{-1}} X_0 \xrightarrow{\text{incl}_0} X_1 \xrightarrow{\text{incl}_1} \dots)$ equipped with • $c : \mathbb{N} \to \mathbb{N}$
 - c(n) = 'number of *n*-cells'
- attaching maps $\alpha_i: S^i imes \mathsf{Fin}(c_{i+1}) o X_i$ for $i \ge -1$

This data should furthermore satisfy the following two conditions:

• X_{-1} is empty

A CW skeleton X_{\bullet} is

- an infinite sequence of types and maps $(X_{-1} \xrightarrow{\text{incl}_{-1}} X_0 \xrightarrow{\text{incl}_0} X_1 \xrightarrow{\text{incl}_1} \dots)$ equipped with • $c : \mathbb{N} \to \mathbb{N}$
 - c(n) = 'number of *n*-cells'
- attaching maps $lpha_i: S^i imes \mathsf{Fin}(c_{i+1}) o X_i$ for $i \geq -1$

This data should furthermore satisfy the following two conditions:

- X₋₁ is empty
- X_{i+1} is obtained as the following pushout

A CW skeleton X_{\bullet} is

- an infinite sequence of types and maps $(X_{-1} \xrightarrow{\text{incl}_{-1}} X_0 \xrightarrow{\text{incl}_0} X_1 \xrightarrow{\text{incl}_1} \dots)$ equipped with • $c : \mathbb{N} \to \mathbb{N}$
 - c(n) = 'number of *n*-cells'
- attaching maps $lpha_i: S^i imes \mathsf{Fin}(c_{i+1}) o X_i$ for $i \ge -1$

This data should furthermore satisfy the following two conditions:

- X₋₁ is empty
- X_{i+1} is obtained as the following pushout

A CW skeleton is said to be finite (of dimension n) if incl_i is an equivalence for all $i \ge n$.

- Notation: Let us write $incl_{\infty} : X_n \to X_{\infty}$ for the inclusion into the sequential colimit of X_{\bullet}
- Obvious question: if these were to be the objects of a (wild) category, how should we define arrows?

▲ ∃ ▶ ∃ ∃ ■

- Notation: Let us write incl_∞ : X_n → X_∞ for the inclusion into the sequential colimit of X_●
- Obvious question: if these were to be the objects of a (wild) category, how should we define arrows?

Definition 2 (Cellular maps)

Let X_{\bullet} and Y_{\bullet} be CW skeleta. A **cellular map**, denoted $f_{\bullet}: X_{\bullet} \to Y_{\bullet}$, consists of

- Notation: Let us write incl_∞ : X_n → X_∞ for the inclusion into the sequential colimit of X_●
- Obvious question: if these were to be the objects of a (wild) category, how should we define arrows?

Definition 2 (Cellular maps)

Let X_{\bullet} and Y_{\bullet} be CW skeleta. A **cellular map**, denoted $f_{\bullet}: X_{\bullet} \to Y_{\bullet}$, consists of

• a family $f_i: X_i \to Y_i$ for $i \ge -1$

- Notation: Let us write incl_∞ : X_n → X_∞ for the inclusion into the sequential colimit of X_●
- Obvious question: if these were to be the objects of a (wild) category, how should we define arrows?

Definition 2 (Cellular maps)

Let X_{\bullet} and Y_{\bullet} be CW skeleta. A **cellular map**, denoted $f_{\bullet}: X_{\bullet} \to Y_{\bullet}$, consists of

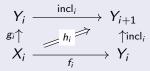
- a family $f_i: X_i \to Y_i$ for $i \ge -1$
- a family of homotopies *h_i* witnessing the commutativity of the following square.

◎ ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● の Q @

• The natural notion of homotopies of cellular maps is the following:

Definition 3

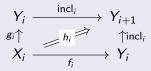
A cellular homotopy between cellular maps $f_{\bullet}, g_{\bullet} : X_{\bullet} \to Y_{\bullet}$, denoted $f_{\bullet} \sim g_{\bullet}$, is a family of homotopies h_i witnessing the commutativity of



• The natural notion of homotopies of cellular maps is the following:

Definition 3

A cellular homotopy between cellular maps $f_{\bullet}, g_{\bullet} : X_{\bullet} \to Y_{\bullet}$, denoted $f_{\bullet} \sim g_{\bullet}$, is a family of homotopies h_i witnessing the commutativity of



with fillers, for each $x : X_i$, of the following square of paths.

- Cellular maps is not the only notion of map possible: could also define Hom(X_●, Y_●) := (X_∞ → Y_∞)
- This is, in particular, the appropriate definition of map for the category of CW complexes:

Definition 4 (CW complexes)

A type A is a (finite) CW complex if there merely exists a (finite) CW skeleton X_{\bullet} s.t. $X_{\infty} \simeq A$.

- CW^{skel}, the category of CW skeleta with cellular maps.
- CW, the category of CW complexes with plain functions as hom-types.
- CW_{∞}^{skel} , the category of CW skeleta with $Hom(X_{\bullet}, Y_{\bullet}) := (X_{\infty} \to Y_{\infty})$

- $\bullet~\ensuremath{\mathsf{CW}^{\texttt{skel}}}\xspace$, the category of CW skeleta with cellular maps.
 - Our working category
- CW, the category of CW complexes with plain functions as hom-types.
- CW_{∞}^{skel} , the category of CW skeleta with $Hom(X_{\bullet}, Y_{\bullet}) := (X_{\infty} \to Y_{\infty})$

- CW^{skel}, the category of CW skeleta with cellular maps.
 - Our working category
- CW, the category of CW complexes with plain functions as hom-types.
 - The target category
- CW_{∞}^{skel} , the category of CW skeleta with $Hom(X_{\bullet}, Y_{\bullet}) := (X_{\infty} \to Y_{\infty})$

- CW^{skel}, the category of CW skeleta with cellular maps.
 - Our working category
- CW, the category of CW complexes with plain functions as hom-types.
 - The target category
- CW_{∞}^{skel} , the category of CW skeleta with $Hom(X_{\bullet}, Y_{\bullet}) := (X_{\infty} \to Y_{\infty})$
 - An 'explicit' version of CW. Useful intermediary step for translating between ${\rm CW}^{\tt skel}$ and CW

- CW^{skel}, the category of CW skeleta with cellular maps.
 - Our working category
- CW, the category of CW complexes with plain functions as hom-types.
 - The target category
- CW_{∞}^{skel} , the category of CW skeleta with $Hom(X_{\bullet}, Y_{\bullet}) := (X_{\infty} \to Y_{\infty})$
 - An 'explicit' version of CW. Useful intermediary step for translating between ${\rm CW}^{{\rm skel}}$ and CW
- Goal: define $H_n : CW \rightarrow AbGrp$

1 Defining H_n^{skel} : CW^{skel} \rightarrow AbGrp

2 Defining $H_n^{\operatorname{skel}_\infty} : \operatorname{CW}_\infty^{\operatorname{skel}} \to \operatorname{AbGrp}$

3 Defining $H_n : CW \to AbGrp$

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thro

□ ► < E ► < E ► E = < <</p>

Construction of homology (à la Buchholtz-Favonia)

Proposition 5 (Buchholtz-Favonia)

Given a CW skeleton
$$X_{\bullet}$$
, we have $X_{n+1}/X_n \simeq \bigvee_{x:\operatorname{Fin}(c_{n+1})} S^{n+1}$

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thm

Construction of homology (à la Buchholtz-Favonia)

Proposition 5 (Buchholtz-Favonia)

Given a CW skeleton
$$X_{ullet}$$
, we have $X_{n+1}/X_n\simeq igvee_{x:\operatorname{Fin}(c_{n+1})} S^{n+1}$

• Very simplified (and somewhat paraphrased): can show that any skeleton induces an element $\widehat{\alpha}$ of

$$\|\bigvee_{x:\operatorname{Fin}(c_{n+2})}S^{n+1}\to\bigvee_{x:\operatorname{Fin}(c_{n+1})}S^{n+1}\|_0$$

Construction of homology (à la Buchholtz-Favonia)

Proposition 5 (Buchholtz-Favonia)

Given a CW skeleton
$$X_{ullet}$$
, we have $X_{n+1}/X_n\simeq \bigvee_{x:\operatorname{Fin}(c_{n+1})}S^{n+1}$

• Very simplified (and somewhat paraphrased): can show that any skeleton induces an element $\widehat{\alpha}$ of

$$\| \bigvee_{x:\operatorname{Fin}(c_{n+2})} S^{n+1} \to \bigvee_{x:\operatorname{Fin}(c_{n+1})} S^{n+1} \|_{0}$$

$$\xrightarrow{\operatorname{deg}} \operatorname{Hom}(\mathbb{Z}[c_{n+2}], \mathbb{Z}[c_{n+1}])$$

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thm

Proposition 5 (Buchholtz-Favonia)

Given a CW skeleton
$$X_{ullet}$$
, we have $X_{n+1}/X_n\simeq igvee_{x:\operatorname{Fin}(c_{n+1})} S^{n+1}$

• Very simplified (and somewhat paraphrased): can show that any skeleton induces an element $\widehat{\alpha}$ of

$$\| \bigvee_{x:\operatorname{Fin}(c_{n+2})} S^{n+1} \to \bigvee_{x:\operatorname{Fin}(c_{n+1})} S^{n+1} \|_{0}$$

$$\xrightarrow{\operatorname{deg}} \operatorname{Hom}(\mathbb{Z}[c_{n+2}], \mathbb{Z}[c_{n+1}])$$

• Define ∂_{n+1} : deg $(\widehat{\alpha})$

Proposition 5 (Buchholtz-Favonia)

Given a CW skeleton
$$X_{ullet}$$
, we have $X_{n+1}/X_n\simeq igvee_{x:\operatorname{Fin}(c_{n+1})} S^{n+1}$

• Very simplified (and somewhat paraphrased): can show that any skeleton induces an element $\widehat{\alpha}$ of

$$\| \bigvee_{x:\operatorname{Fin}(c_{n+2})} S^{n+1} \to \bigvee_{x:\operatorname{Fin}(c_{n+1})} S^{n+1} \|_{C}$$

$$\xrightarrow{\operatorname{deg}} \operatorname{Hom}(\mathbb{Z}[c_{n+2}], \mathbb{Z}[c_{n+1}])$$

- Define ∂_{n+1} : deg (\widehat{lpha})
- With some care, get $\partial_0:\mathbb{Z}[c_1]\to\mathbb{Z}[c_0]$ in a similar fashion

• We get a chain complex...

$$\ldots \xrightarrow{\partial_2} \mathbb{Z}[c_2] \xrightarrow{\partial_1} \mathbb{Z}[c_1] \xrightarrow{\partial_0} \mathbb{Z}[c_0]$$

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thm

- 세 문 ► - 세 문 ►

ъ

• We get a chain complex...

$$\ldots \xrightarrow{\partial_2} \mathbb{Z}[c_2] \xrightarrow{\partial_1} \mathbb{Z}[c_1] \xrightarrow{\partial_0} \mathbb{Z}[c_0]$$

• ... and so can define $H_n^{\texttt{skel}} : \texttt{CW}^{\texttt{skel}} \to \texttt{AbGrp}$ by

 $H_n^{\mathtt{skel}}(X_{ullet}) := \ker \partial_n / \mathrm{im} \, \partial_{n+1}$

伺 ト イヨト イヨト ヨヨ のへつ

• We get a chain complex...

$$\ldots \xrightarrow{\partial_2} \mathbb{Z}[c_2] \xrightarrow{\partial_1} \mathbb{Z}[c_1] \xrightarrow{\partial_0} \mathbb{Z}[c_0]$$

• ... and so can define $H_n^{\texttt{skel}} : \texttt{CW}^{\texttt{skel}} \to \texttt{AbGrp}$ by

$$H_n^{\mathtt{skel}}(X_{\bullet}) := \ker \partial_n / \operatorname{im} \partial_{n+1}$$

Proposition 6 H_n^{skel} is functorial

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thr

- ∢ ∃ ▶ _ ∃

= 200

• We get a chain complex...

$$\ldots \xrightarrow{\partial_2} \mathbb{Z}[c_2] \xrightarrow{\partial_1} \mathbb{Z}[c_1] \xrightarrow{\partial_0} \mathbb{Z}[c_0]$$

• ... and so can define $H_n^{\texttt{skel}} : \texttt{CW}^{\texttt{skel}} \to \texttt{AbGrp}$ by

$$H_n^{\mathtt{skel}}(X_{\bullet}) := \ker \partial_n / \operatorname{im} \partial_{n+1}$$

Proposition 6

 H_n^{skel} is functorial

Proof.

Standard proof/construction: cellular maps induce chain maps which, in turn, induce maps on homology.

1 Defining H_n^{skel} : $CW^{\text{skel}} \rightarrow AbGrp$

2 Defining $H_n^{\operatorname{skel}_\infty} : \operatorname{CW}_\infty^{\operatorname{skel}} \to \operatorname{AbGrp}$

3 Defining $H_n : CW \to AbGrp$

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thm

□ ► < E ► < E ► E = < < <</p>

• Does this extend to a functor $H_n^{\operatorname{skel}_\infty} : \operatorname{CW}_\infty^{\operatorname{skel}} \to \operatorname{AbGrp}$?

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thm

- ∢ ≣ →

∄ ▶ ∢ ∋

- Does this extend to a functor $H_n^{\text{skel}_{\infty}} : CW_{\infty}^{\text{skel}} \to AbGrp?$
- On objects: $H_n^{\operatorname{skel}_\infty}(X_{ullet}) := H_n^{\operatorname{skel}}(X_{ullet})$

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thm

伺 ト イヨト イヨト ヨヨ のへつ

- Does this extend to a functor $H_n^{\text{skel}_{\infty}} : CW_{\infty}^{\text{skel}} \to AbGrp?$
- On objects: $H_n^{\operatorname{skel}_\infty}(X_{ullet}) := H_n^{\operatorname{skel}}(X_{ullet})$
- On arrows? Need a way to lift maps on colimits to cellular maps, i.e. a section of the map:

$$(X_{ullet} o Y_{ullet}) \xrightarrow{\mathsf{colim}} (X_{\infty} o Y_{\infty})$$

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thm

- Does this extend to a functor $H_n^{\text{skel}_{\infty}} : CW_{\infty}^{\text{skel}} \to AbGrp?$
- On objects: $H_n^{\operatorname{skel}_\infty}(X_{ullet}) := H_n^{\operatorname{skel}}(X_{ullet})$
- On arrows? Need a way to lift maps on colimits to cellular maps, i.e. a section of the map:

$$(X_{ullet} o Y_{ullet}) \xrightarrow{\mathsf{colim}} (X_{\infty} o Y_{\infty})$$

The cellular approximation theorem roughly says that such a section exists.

- In order to stay constructive, we need to restrict ourselves to finite CW skeleta
 - Since $H_n^{\text{skel}_\infty}(X_{\bullet}) \cong H_n^{\text{skel}_\infty}(X_{\bullet}^{(n+1)})$ holds trivially, this is not a problem w.r.t. homology.

- In order to stay constructive, we need to restrict ourselves to finite CW skeleta
 - Since H^{skel∞}_n(X_•) ≅ H^{skel∞}_n(X⁽ⁿ⁺¹⁾_•) holds trivially, this is not a problem w.r.t. homology.

Theorem 7 (The cellular approximation theorem)

Let X_{\bullet} , Y_{\bullet} be CW skeleta with X_{\bullet} finite. Given a map $f : X_{\infty} \to Y_{\infty}$, there merely exists a cellular map $f_{\bullet} : X_{\bullet} \to Y_{\bullet}$ s.t. $f_{\infty} = f$.

- In order to stay constructive, we need to restrict ourselves to finite CW skeleta
 - Since H^{skel∞}_n(X_•) ≅ H^{skel∞}_n(X⁽ⁿ⁺¹⁾_•) holds trivially, this is not a problem w.r.t. homology.

Theorem 7 (The cellular approximation theorem)

Let X_{\bullet}, Y_{\bullet} be CW skeleta with X_{\bullet} finite. Given a map $f : X_{\infty} \to Y_{\infty}$, there merely exists a cellular map $f_{\bullet} : X_{\bullet} \to Y_{\bullet}$ s.t. $f_{\infty} = f$.

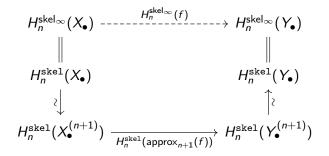
- Essentially: any map can be cellularly approximated up to dimension n, for any $n \ge 0$.
 - The classical version doesn't require *n* to be fixed.
 - Maybe a similar statement is still provable in HoTT... (future work)

'Proof' of the cellular approximation theorem.

Key components

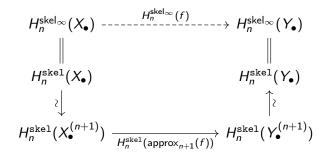
- Finite choice: (for commuting Π with truncations)
- ② Strengthening ind. hyp. by a further coherence condition
- **③** (n-1)-connectivity of $X_n \to X_\infty$ and $X_n \to X_{n+1}$.

This allows for an explicit inductive construction of f_{\bullet} .



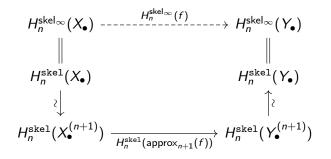
Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thm

□ ► < E ► < E ► E = < < <</p>



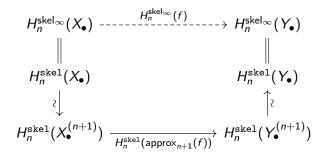
• Problem: the claim that of functoriality of $H_n^{\text{skel}_{\infty}}$ is a set:

伺 ト イヨ ト イヨ ト ヨヨ うくぐ



Problem: the claim that of functoriality of H^{skel∞}_n is a set:
 the theorem only gives us the mere existence of such (n + 1)-approximations.

伺 ト イヨ ト イヨ ト ヨヨ うくぐ



- Problem: the claim that of functoriality of H^{skel∞}_n is a set:
 the theorem only gives us the mere existence of such (n + 1)-approximations.
- We need to use the principle of prop-to-set elimination (Kraus [4])

A = A = A = A = A = A = A

• In our case, this amounts to checking that for any two cellular maps $f_{\bullet}, g_{\bullet} : X_{\bullet} \to Y_{\bullet}$ s.t. $f_{\infty} = g_{\infty}$, we have that $H_n^{\text{skel}}(f_{\bullet}) = H_n^{\text{skel}}(g_{\bullet})$.

A = A = A = A = A = A = A

- In our case, this amounts to checking that for any two cellular maps $f_{\bullet}, g_{\bullet} : X_{\bullet} \to Y_{\bullet}$ s.t. $f_{\infty} = g_{\infty}$, we have that $H_n^{\text{skel}}(f_{\bullet}) = H_n^{\text{skel}}(g_{\bullet})$.
- We need the following lemma whose proof is standard

1 3 1 3 1 3 1 3 0 0 0

- In our case, this amounts to checking that for any two cellular maps $f_{\bullet}, g_{\bullet} : X_{\bullet} \to Y_{\bullet}$ s.t. $f_{\infty} = g_{\infty}$, we have that $H_n^{\text{skel}}(f_{\bullet}) = H_n^{\text{skel}}(g_{\bullet})$.
- We need the following lemma whose proof is standard

Lemma 8

If
$$f_{\bullet} \sim g_{\bullet}$$
, then $H_n^{\text{skel}}(f_{\bullet}) = H_n^{\text{skel}}(g_{\bullet})$

- In our case, this amounts to checking that for any two cellular maps $f_{\bullet}, g_{\bullet} : X_{\bullet} \to Y_{\bullet}$ s.t. $f_{\infty} = g_{\infty}$, we have that $H_n^{\text{skel}}(f_{\bullet}) = H_n^{\text{skel}}(g_{\bullet})$.
- We need the following lemma whose proof is standard

Lemma 8

If
$$f_{\bullet} \sim g_{\bullet}$$
, then $H_n^{\text{skel}}(f_{\bullet}) = H_n^{\text{skel}}(g_{\bullet})$

In light of Lemma 8, what we need is a kind of cellular approximation theorem for cellular homotopies.

Theorem 9 (Cellular approximation theorem, part 2)

Given two cellular maps $f_{\bullet}, g_{\bullet} : X_{\bullet} \to Y_{\bullet}$ with $f_{\infty} = g_{\infty}$ and X_{\bullet} finite, there merely exists a cellular homotopy $f_{\bullet} \sim g_{\bullet}$

Proof.

Morally the same as the proof of the first approximation theorem.

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thm

• With this theorem, we have all we need:

Corollary 10

For any two (n + 1)-approximations f_{\bullet}, g_{\bullet} of a map $f_{\infty}: X_{\infty} \to Y_{\infty}$, we have that $H_n^{\text{skel}}(f_{\bullet}) = H_n^{\text{skel}}(g_{\bullet})$

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thm

伺 ト イヨト イヨト ヨヨ のへつ

• With this theorem, we have all we need:

Corollary 10

For any two (n + 1)-approximations f_{\bullet}, g_{\bullet} of a map $f_{\infty}: X_{\infty} \to Y_{\infty}$, we have that $H_n^{\text{skel}}(f_{\bullet}) = H_n^{\text{skel}}(g_{\bullet})$

• This was precisely what we needed, and so the action of $H_n^{\text{skel}_{\infty}} : CW_{\infty}^{\text{skel}} \to AbGrp$ on maps is well-defined.

• With this theorem, we have all we need:

Corollary 10

For any two (n + 1)-approximations f_{\bullet}, g_{\bullet} of a map $f_{\infty}: X_{\infty} \to Y_{\infty}$, we have that $H_n^{\text{skel}}(f_{\bullet}) = H_n^{\text{skel}}(g_{\bullet})$

- This was precisely what we needed, and so the action of $H_n^{\mathrm{skel}_{\infty}} : \mathrm{CW}_{\infty}^{\mathrm{skel}} \to \mathrm{AbGrp}$ on maps is well-defined.
- The following is easy to see

Proposition 11

 $H^{\mathtt{skel}_\infty}_n: \mathtt{CW}^{\mathtt{skel}}_\infty o \mathtt{AbGrp}$ is a functor

$I Defining H_n^{\text{skel}} : CW^{\text{skel}} \to AbGrp$

2 Defining $H_n^{\operatorname{skel}_\infty} : \operatorname{CW}_\infty^{\operatorname{skel}} \to \operatorname{AbGrp}$

3 Defining $H_n : CW \to AbGrp$

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thr

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

So far, we have two homology functors:

- $H_n^{\mathrm{skel}}: \mathrm{CW}^{\mathrm{skel}} \to \mathrm{AbGrp}$
- $H_n^{\operatorname{skel}_\infty}: \operatorname{CW}_\infty^{\operatorname{skel}} \to \operatorname{AbGrp}$

So far, we have two homology functors:

•
$$H_n^{\text{skel}} : CW^{\text{skel}} \to AbGrp$$

•
$$H^{\mathsf{skel}_{\infty}}_n : \mathsf{CW}^{\mathtt{skel}}_{\infty} \to \mathtt{AbGrp}$$

Finally, we would like to extend $H_n^{\text{skel}_{\infty}}$ this to a functor H_n over CW, the category of spaces with mere CW structures:

$$ext{CW} := \sum_{A: ext{Type}} \| ext{CWstr}(A) \|_{-1} \qquad ext{where}$$
 $ext{CWstr}(A) := \sum_{A_{ullet}: ext{CWskel}} (A_{\infty} \simeq A)$

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thm

So far, we have two homology functors:

•
$$H_n^{\text{skel}} : CW^{\text{skel}} \to AbGrp$$

•
$$H_n^{\operatorname{skel}_\infty}:\operatorname{CW}_\infty^{\operatorname{skel}}\to\operatorname{AbGrp}$$

Finally, we would like to extend $H_n^{\text{skel}_{\infty}}$ this to a functor H_n over CW, the category of spaces with mere CW structures:

$$ext{CW} := \sum_{A: ext{Type}} \| ext{CWstr}(A) \|_{-1} \qquad ext{where}$$
 $ext{CWstr}(A) := \sum_{A_{ullet}: ext{CWskel}} (A_{\infty} \simeq A)$

• Problem: would like to define $H_n(A)$: AbGrp by induction on its mere CW structure $p : || CWstr(A) ||_{-1}$ but the universe AbGrp is a groupoid

- Prop-to-groupoid elimination (Kraus [4]) + SIP + functoriality of $H_n^{\rm skel_\infty}$
- \implies may assume $p: \| \texttt{CWstr} \|_{-1}$ is on the form $p:=|A_{ullet}, e|$

▲ Ξ ► Ξ Ξ < < < </p>

- Prop-to-groupoid elimination (Kraus [4]) + SIP + functoriality of $H_n^{\rm skel_\infty}$
- \implies may assume $p: \| \texttt{CWstr} \|_{-1}$ is on the form $p:=|A_{ullet},e|$
 - In this case, we simply define

$$H_n(A) := H_n^{\operatorname{skel}_\infty}(A_{\bullet})$$

- Prop-to-groupoid elimination (Kraus [4]) + SIP + functoriality of $H_n^{\rm skel_\infty}$
- \implies may assume $p: \| \texttt{CWstr} \|_{-1}$ is on the form $p:=|A_{ullet}, e|$
 - In this case, we simply define

$$H_n(A) := H_n^{\operatorname{skel}_\infty}(A_{\bullet})$$

• Functoriality of H_n follows from the functoriality of $H_n^{\text{skel}_{\infty}}$ in a similar manner.

- Prop-to-groupoid elimination (Kraus [4]) + SIP + functoriality of $H_n^{\text{skel}_{\infty}}$
- \implies may assume $p: \| \texttt{CWstr} \|_{-1}$ is on the form $p:=|A_{ullet},e|$
 - In this case, we simply define

$$H_n(A) := H_n^{\operatorname{skel}_\infty}(A_{\bullet})$$

- Functoriality of H_n follows from the functoriality of $H_n^{\text{skel}_{\infty}}$ in a similar manner.
- And so, finally, we have constructed a functorial homology theory $H_n : CW \rightarrow AbGrp$

- Prop-to-groupoid elimination (Kraus [4]) + SIP + functoriality of $H_n^{\rm skel_\infty}$
- \implies may assume $p: \| ext{CWstr} \|_{-1}$ is on the form $p:=|A_{ullet}, e|$
 - In this case, we simply define

$$H_n(A) := H_n^{\operatorname{skel}_\infty}(A_{\bullet})$$

- Functoriality of H_n follows from the functoriality of $H_n^{\text{skel}_{\infty}}$ in a similar manner.
- And so, finally, we have constructed a functorial homology theory $H_n : CW \rightarrow AbGrp$
- ...actually, this ongoing work. We have not yet verified the Eilenberg-Steenrod axioms.

• Regarding cellular homology:

- Regarding CW complexes:
 - Approximation of *n*-connected CW complexes by skeleta with trivial up to dim. n + 1
- Regarding cellular homology:

- Approximation of *n*-connected CW complexes by skeleta with trivial up to dim. n+1
- Investigate stronger approximation theorems (and to which extent they rely on choice)
- Regarding cellular homology:

- Approximation of *n*-connected CW complexes by skeleta with trivial up to dim. n+1
- Investigate stronger approximation theorems (and to which extent they rely on choice)
- Regarding cellular homology:
 - Prove the Eilenberg-Steenrod axioms

- Approximation of *n*-connected CW complexes by skeleta with trivial up to dim. n+1
- Investigate stronger approximation theorems (and to which extent they rely on choice)
- Regarding cellular homology:
 - Prove the Eilenberg-Steenrod axioms
 - Prove the Hurewicz theorem

- Regarding CW complexes:
 - Approximation of *n*-connected CW complexes by skeleta with trivial up to dim. n+1
 - Investigate stronger approximation theorems (and to which extent they rely on choice)
- Regarding cellular homology:
 - Prove the Eilenberg-Steenrod axioms
 - Prove the Hurewicz theorem

- Approximation of *n*-connected CW complexes by skeleta with trivial up to dim. n + 1
- Investigate stronger approximation theorems (and to which extent they rely on choice)
- Regarding cellular homology:
 - Prove the Eilenberg-Steenrod axioms
 - Prove the Hurewicz theorem
 - Show that the theory is equivalent to that developed by Graham [3] and Christenssen & Scoccola [2].

Thanks for listening!

Axel Ljungström, Anders Mörtberg, Loïc Pujet Celular Homology and the Celular Approximation The

= 990

Lemma 12

Let $P: A \rightarrow AbGrp$ be a family satisfying

- for any a, a' : A, we have an equivalence $e_{a,a'} : P(a) \simeq P(a')$
- for any a, a', a'', we have that $e_{a',a''} \circ e_{a,a'} = e_{a,a''}$

In this case, there is a family $P': ||A||_{-1} \rightarrow AbGrp \ s.t.$ P'(|a|) = P(a)

Proof.

Solution: prop-to-groupoid elimination rule (Kraus [4]) and the structure identity principle.

- Ulrik Buchholtz and Kuen-Bang Hou Favonia. "Cellular Cohomology in Homotopy Type Theory". In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '18. Oxford, United Kingdom: Association for Computing Machinery, 2018, pp. 521–529. ISBN: 9781450355834. DOI: 10.1145/3209108.3209188.
- [2] J. Daniel Christensen and Luis Scoccola. "The Hurewicz theorem in Homotopy Type Theory". In: Algebraic & Geometric Topology 23 (5 2023), pp. 2107–2140.
- [3] Robert Graham. Synthetic Homology in Homotopy Type Theory. Preprint. 2018. arXiv: 1706.01540 [math.LO].
- [4] Nicolai Kraus. "The General Universal Property of the Propositional Truncation". In: 20th International Conference on Types for Proofs and Programs (TYPES 2014). Ed. by Hugo Herbelin, Pierre Letouzey, and Matthieu Sozeau. Vol. 39. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, 2015, pp. 111–145. ISBN: 978-3-939897-88-0. DOI: 10.4230/LIPIcs.TYPES.2014.111.

母▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のく⊙

Axel Ljungström, Anders Mörtberg, Loïc Pujet Cellular Homology and the Cellular Approximation Thm