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Introduction

Cellular cohomology: defined and studied for the first time in
HoTT by Buchholtz and Favonia [1]. They

defined the nth cellular cohomology group of a space X with a
given CW structure, and
showed that this definition agrees with the usual of Hn(−,G )
in HoTT and could thereby conclude

functoriality of their theory, and
invariance of CW structure

What about homology? Can be defined in an entirely
analogous manner. But...

...proving functoriality via another homology theory︸ ︷︷ ︸
underdeveloped in HoTT

: difficult

Maybe a more traditional line of attack via cellular
approximation works?
This hinges on the theory of CW complexes being developed in
HoTT. Interesting in its own right!
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Our work

Our primary contributions are
Proofs of (constructive versions of) the cellular approximation
theorem(s) in HoTT
The construction of a functorial homology theory (à la
Buchholtz-Favonia) on the wild category of CW complexes.
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Definition 1
A CW skeleton X• is

an infinite sequence of types and maps

(X−1
incl−1−−−→ X0

incl0−−→ X1
incl1−−→ . . . ) equipped with

c : N→ N
c(n) = ‘number of n-cells’

attaching maps αi : S i × Fin(ci+1)→ Xi for i ≥ −1

X−1 is empty
Xi+1 is obtained as the following pushout

S i × Fin(ci+1) Fin(ci+1)

Xi Xi+1

snd

αi y

A CW skeleton is said to be finite (of dimension n) if incli is an
equivalence for all i ≥ n.
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Notation: Let us write incl∞ : Xn → X∞ for the inclusion into
the sequential colimit of X•
Obvious question: if these were to be the objects of a (wild)
category, how should we define arrows?

Definition 2 (Cellular maps)

Let X• and Y• be CW skeleta. A cellular map, denoted
f• : X• → Y•, consists of

a family fi : Xi → Yi for i ≥ −1

a family of homotopies hi witnessing the commutativity of the
following square.

Xi+1 Yi+1

Xi Yi

fi+1

fi

hi
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The natural notion of homotopies of cellular maps is the
following:

Definition 3
A cellular homotopy between cellular maps f•, g• : X• → Y•,
denoted f• ∼ g•, is a family of homotopies hi witnessing the
commutativity of

Yi Yi+1

Xi Yifi

gi incli

incli

hi

with fillers, for each x : Xi , of the following square of paths.

incli+1(fi+1(incli (x))) incli+1(fi+1(incli (x)))

incli+1(incli (fi (x))) incli+1(incli (gi (x)))

hi+1(incli (x))

apincl (hi (x))
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Cellular maps is not the only notion of map possible: could
also define Hom(X•,Y•) := (X∞ → Y∞)

This is, in particular, the appropriate definition of map for the
category of CW complexes:

Definition 4 (CW complexes)

A type A is a (finite) CW complex if there merely exists a (finite)
CW skeleton X• s.t. X∞ ' A.
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The (wild) categories at play:
CWskel, the category of CW skeleta with cellular maps.

Our working category

CW, the category of CW complexes with plain functions as
hom-types.

The target category

CWskel∞ , the category of CW skeleta with
Hom(X•,Y•) := (X∞ → Y∞)

An ‘explicit’ version of CW. Useful intermediary step for
translating between CWskel and CW

Goal: define Hn : CW→ AbGrp
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Table of Contents

1 Defining Hskel
n : CWskel → AbGrp

2 Defining Hskel∞
n : CWskel∞ → AbGrp

3 Defining Hn : CW→ AbGrp
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Construction of homology (à la Buchholtz-Favonia)

Proposition 5 (Buchholtz-Favonia)

Given a CW skeleton X•, we have Xn+1/Xn '
∨

x :Fin(cn+1)

Sn+1

Very simplified (and somewhat paraphrased): can show that
any skeleton induces an element α̂ of

‖
∨

x :Fin(cn+2)

Sn+1 →
∨

x :Fin(cn+1)

Sn+1 ‖0

deg−−→ Hom(Z[cn+2],Z[cn+1])

Define ∂n+1 : deg(α̂)

With some care, get ∂0 : Z[c1]→ Z[c0] in a similar fashion
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We get a chain complex...

. . .
∂2−→ Z[c2]

∂1−→ Z[c1]
∂0−→ Z[c0]

... and so can define Hskel
n : CWskel → AbGrp by

Hskel
n (X•) := ker ∂n/im ∂n+1

Proposition 6

Hskel
n is functorial

Proof.
Standard proof/construction: cellular maps induce chain maps
which, in turn, induce maps on homology.
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Does this extend to a functor Hskel∞
n : CWskel∞ → AbGrp?

On objects: Hskel∞
n (X•) := Hskel

n (X•) 3

On arrows? Need a way to lift maps on colimits to cellular
maps, i.e. a section of the map:

(X• → Y•)
colim−−−→ (X∞ → Y∞)

The cellular approximation theorem roughly says that such a
section exists.
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In order to stay constructive, we need to restrict ourselves to
finite CW skeleta

Since Hskel∞
n (X•) ∼= Hskel∞

n (X
(n+1)
• ) holds trivially, this is not a

problem w.r.t. homology.

Theorem 7 (The cellular approximation theorem)

Let X•,Y• be CW skeleta with X• finite. Given a map
f : X∞ → Y∞, there merely exists a cellular map f• : X• → Y• s.t.
f∞ = f .

Essentially: any map can be cellularly approximated up to
dimension n, for any n ≥ 0.

The classical version doesn’t require n to be fixed.
Maybe a similar statement is still provable in HoTT... (future
work)
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‘Proof’ of the cellular approximation theorem.
Key components

1 Finite choice: (for commuting Π with truncations)
2 Strengthening ind. hyp. by a further coherence condition
3 (n − 1)-connectivity of Xn → X∞ and Xn → Xn+1.

This allows for an explicit inductive construction of f•.
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Given a map f : X∞ → Y∞ and an (n + 1)-approximation
approxn+1(f ), we can define

Hskel∞
n (X•) Hskel∞

n (Y•)

Hskel
n (X•) Hskel

n (Y•)

Hskel
n (X

(n+1)
• ) Hskel

n (Y
(n+1)
• )

∼

Hskel
n (approxn+1(f ))

∼

Hskel∞
n (f )

Problem: the claim that of functoriality of Hskel∞
n is a set:

the theorem only gives us the mere existence of such
(n + 1)-approximations.

We need to use the principle of prop-to-set elimination
(Kraus [4])
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In our case, this amounts to checking that for any two cellular
maps f•, g• : X• → Y• s.t. f∞ = g∞, we have that
Hskel
n (f•) = Hskel

n (g•).

We need the following lemma whose proof is standard

Lemma 8

If f• ∼ g•, then Hskel
n (f•) = Hskel

n (g•)

In light of Lemma 8, what we need is a kind of cellular
approximation theorem for cellular homotopies.
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Theorem 9 (Cellular approximation theorem, part 2)

Given two cellular maps f•, g• : X• → Y• with f∞ = g∞ and X•
finite, there merely exists a cellular homotopy f• ∼ g•

Proof.
Morally the same as the proof of the first approximation
theorem.
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With this theorem, we have all we need:

Corollary 10

For any two (n + 1)-approximations f•, g• of a map
f∞ : X∞ → Y∞, we have that Hskel

n (f•) = Hskel
n (g•)

This was precisely what we needed, and so the action of
Hskel∞
n : CWskel∞ → AbGrp on maps is well-defined.

The following is easy to see

Proposition 11

Hskel∞
n : CWskel∞ → AbGrp is a functor
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So far, we have two homology functors:
Hskel
n : CWskel → AbGrp

Hskel∞
n : CWskel∞ → AbGrp

Finally, we would like to extend Hskel∞
n this to a functor Hn over

CW, the category of spaces with mere CW structures:

CW :=
∑

A:Type

‖ CWstr(A) ‖−1 where

CWstr(A) :=
∑

A•:CWskel
(A∞ ' A)

Problem: would like to define Hn(A) : AbGrp by induction on
its mere CW structure p : ‖ CWstr(A) ‖−1 but the universe
AbGrp is a groupoid
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Prop-to-groupoid elimination (Kraus [4]) + SIP + functoriality
of Hskel∞

n

=⇒ may assume p : ‖ CWstr ‖−1 is on the form p := |A•, e |

In this case, we simply define

Hn(A) := Hskel∞
n (A•)

and we’re done
Functoriality of Hn follows from the functoriality of Hskel∞

n in a
similar manner.
And so, finally, we have constructed a functorial homology
theory Hn : CW→ AbGrp

...actually, this ongoing work. We have not yet verified the
Eilenberg-Steenrod axioms.
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Future/Ongoing work

Regarding CW complexes:

Approximation of n-connected CW complexes by skeleta with
trivial up to dim. n + 1
Investigate stronger approximation theorems (and to which
extent they rely on choice)

Regarding cellular homology:

Prove the Eilenberg-Steenrod axioms
Prove the Hurewicz theorem
Show that the theory is equivalent to that developed by
Graham [3] and Christenssen & Scoccola [2].
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Thanks

Thanks for listening!
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Appendix: Prop-to-groupoid elimination

Lemma 12
Let P : A→ AbGrp be a family satisfying

for any a, a′ : A, we have an equivalence ea,a′ : P(a) ' P(a′)

for any a, a′, a′′, we have that ea′,a′′ ◦ ea,a′ = ea,a′′

In this case, there is a family P ′ : ‖A ‖−1 → AbGrp s.t.
P ′(| a |) = P(a)

Proof.
Solution: prop-to-groupoid elimination rule (Kraus [4]) and the
structure identity principle.
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