Projective Space and Line Bundles in Synthetic Algebraic Geometry

Matthias Hutzler j.w.w. Felix Cherubini, Thierry Coquand, David Wärn

HoTT/UF 2024 Leuven / online

Slides and video recording licensed under CC BY 4.0.

In this talk:

- SAG at a glance
- ▶ projective space \mathbb{P}^n
- line bundles, Pic(X)
- classification of line bundles on \mathbb{P}^n
- ▶ application to $Aut(\mathbb{P}^n)$

All results are well-known in (external) algebraic geometry, but we present new, synthetic proofs using higher types.

Synthetic algebraic geometry

$$k ext{-Sch}_{\mathrm{f.p.}} \hookrightarrow \operatorname{Zar}_{k} \coloneqq \operatorname{Sh}(k ext{-Alg}_{\mathrm{f.p.}})^{\mathrm{op}}, J_{\mathrm{Zar}})$$

Synthetic algebraic geometry

$$k\operatorname{-Sch}_{\mathrm{f.p.}} \hookrightarrow \operatorname{Zar}_k \coloneqq \operatorname{Sh}(k\operatorname{-Alg}_{\mathrm{f.p.}})$$

We interpret HoTT internally in $\operatorname{Zar}_{k}^{(\infty,1)}$ and write *R* for the *structure sheaf*:

$$k ext{-Alg}_{\mathrm{f.p.}} \to \operatorname{Set}$$

 $A \mapsto A$

Synthetic algebraic geometry

$$k\operatorname{-Sch}_{\operatorname{f.p.}} \hspace{0.1in} \hookrightarrow \hspace{0.1in} \operatorname{Zar}_{k} \coloneqq \operatorname{Sh}(k\operatorname{-Alg}_{\operatorname{f.p.}} \operatorname{^{op}}, J_{\operatorname{Zar}})$$

We interpret HoTT internally in $\operatorname{Zar}_{k}^{(\infty,1)}$ and write *R* for the *structure sheaf*:

$$k ext{-Alg}_{\mathrm{f.p.}} \to \operatorname{Set}$$

 $A \mapsto A$

- R is a ring.
- Every x : R with $x \neq 0$ is invertible.
 - But we don't have $x = 0 \lor x \neq 0$.
- Every $x : R^n$ with $x \neq 0$ generates a sub-module $\langle x \rangle \subseteq R^n$ with $\langle x \rangle \cong R^1$.

- ► Every function f : R → R is a polynomial.
 - But we can't determine $deg(f) : \mathbb{N}$.
- ► Every function R^m → Rⁿ is given by n polynomials in m variables.

affine space $\mathbb{A}^n := \mathbb{R}^n$

affine space $\mathbb{A}^n \coloneqq R^n$ multiplicative group $\mathbb{G}_m \coloneqq R^{\times} = R \setminus \{0\}$

affine space
$$\mathbb{A}^n := \mathbb{R}^n$$

multiplicative group $\mathbb{G}_m := \mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$
projective space $\mathbb{P}^n := \sum_{L \subseteq \mathbb{R}^{n+1} \text{ sub-module}} \|L \cong \mathbb{R}^1\|$

affine space
$$\mathbb{A}^{n} \coloneqq \mathbb{R}^{n}$$

multiplicative group $\mathbb{G}_{m} \coloneqq \mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$
projective space $\mathbb{P}^{n} \coloneqq \sum_{L \subseteq \mathbb{R}^{n+1} \text{ sub-module}} \|L \cong \mathbb{R}^{1}\|$

$$\mathsf{Grassmannian} \ \mathbb{G}_k(R^n) \coloneqq \sum_{P \ \subseteq \ R^n \ \mathsf{sub-module}} \|P \cong R^k|$$

affine space $\mathbb{A}^{n} := \mathbb{R}^{n}$ multiplicative group $\mathbb{G}_{m} := \mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ projective space $\mathbb{P}^{n} := \sum_{\substack{L \subseteq \mathbb{R}^{n+1} \text{ sub-module}}} \|L \cong \mathbb{R}^{1}\|$ $= \mathbb{G}_{1}(\mathbb{R}^{n+1})$ Grassmannian $\mathbb{G}_{k}(\mathbb{R}^{n}) := \sum_{\substack{P \subseteq \mathbb{R}^{n} \text{ sub-module}}} \|P \cong \mathbb{R}^{k}\|$

Let $p, p' : \mathbb{P}^n$ with $p \neq p'$.

Consider the sub-module $\langle p, p' \rangle \subseteq R^{n+1}$.

Let $p, p' : \mathbb{P}^n$ with $p \neq p'$.

Consider the sub-module $\langle p, p' \rangle \subseteq R^{n+1}$. Fact: $\|\langle p, p' \rangle \cong R^2 \|$

Let
$$p, p' : \mathbb{P}^n$$
 with $p \neq p'$.

Consider the sub-module $\langle p, p' \rangle \subseteq R^{n+1}$. Fact: $\|\langle p, p' \rangle \cong R^2\|$

So we have

 $\mathbb{G}_1(\langle p,p'
angle)\subseteq \mathbb{P}^n$

with

 $\|\mathbb{G}_1(\langle p, p' \rangle) = \mathbb{P}^1\|.$

Let
$$p, p' : \mathbb{P}^n$$
 with $p \neq p'$.

Consider the sub-module $\langle p, p' \rangle \subseteq R^{n+1}$. Fact: $\|\langle p, p' \rangle \cong R^2 \|$

So we have

 $\mathbb{G}_1(\langle p,p'
angle)\subseteq \mathbb{P}^n$

with

$$\|\mathbb{G}_1(\langle p,p'
angle)=\mathbb{P}^1\|.$$

We say: $\mathbb{G}_1(\langle p, p' \rangle)$ is the "line" interpolating between p and p'.

Proposition All functions $\mathbb{P}^n \to R$ are constant.

Proposition All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

Proposition All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

Case $n \ge 2$:

Proposition All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

Case $n \ge 2$:

Let $f : \mathbb{P}^n \to R$ be given.

Proposition All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

Case $n \ge 2$:

Let $f : \mathbb{P}^n \to R$ be given. For $p, p' : \mathbb{P}^n$ with $p \neq p'$ we have $\|\mathbb{G}_1(\langle p, p' \rangle) = \mathbb{P}^1\|$.

Proposition All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

Case $n \ge 2$:

Let $f : \mathbb{P}^n \to R$ be given. For $p, p' : \mathbb{P}^n$ with $p \neq p'$ we have $\|\mathbb{G}_1(\langle p, p' \rangle) = \mathbb{P}^1\|$. So $f|_{\mathbb{G}_1(\langle p, p' \rangle)}$ must be constant (by case n = 1).

Proposition All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

Case $n \ge 2$:

Let $f : \mathbb{P}^n \to R$ be given. For $p, p' : \mathbb{P}^n$ with $p \neq p'$ we have $||\mathbb{G}_1(\langle p, p' \rangle) = \mathbb{P}^1||$. So $f|_{\mathbb{G}_1(\langle p, p' \rangle)}$ must be constant (by case n = 1). In particular: $p \neq p' \to f(p) = f(p')$

Proposition All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

Case $n \ge 2$:

Let $f : \mathbb{P}^n \to R$ be given. For $p, p' : \mathbb{P}^n$ with $p \neq p'$ we have $||\mathbb{G}_1(\langle p, p' \rangle) = \mathbb{P}^1||$. So $f|_{\mathbb{G}_1(\langle p, p' \rangle)}$ must be constant (by case n = 1). In particular: $p \neq p' \to f(p) = f(p')$

Fix $p_0 \neq p_1$. Then:

$$p \neq p_0 \quad \lor \quad p \neq p_1$$

 $f(p) = f(p_0) \quad \lor \quad f(p) = f(p_1) = f(p_0)$

The following is true for any ring R.

 $-\otimes -: R\operatorname{\!-Mod} \times R\operatorname{\!-Mod} \to R\operatorname{\!-Mod}$

The following is true for any ring R.

$$-\otimes -$$
: R -Mod \times R -Mod \rightarrow R -Mod

 $R^1 \otimes M \cong M$ $R^1 \otimes R^1 \cong R^1$

The following is true for any ring R.

$$-\otimes -$$
: R -Mod \times R -Mod \rightarrow R -Mod

 $R^1 \otimes M \cong M$ $R^1 \otimes R^1 \cong R^1$

The *dual module* of M is

 $M^{\vee} \coloneqq \operatorname{Hom}(M, R^1).$

The following is true for any ring R.

$$-\otimes -$$
: R -Mod \times R -Mod \rightarrow R -Mod

 $R^1 \otimes M \cong M$ $R^1 \otimes R^1 \cong R^1$

The *dual module* of M is

 $M^{\vee} \coloneqq \operatorname{Hom}(M, R^1).$

$$R^{1^{\vee}} \cong R^{1}$$

The following is true for any ring R.

$$-\otimes -$$
: R -Mod \times R -Mod \rightarrow R -Mod

 $R^1 \otimes M \cong M$ $R^1 \otimes R^1 \cong R^1$

The *dual module* of M is

 $M^{\vee} \coloneqq \operatorname{Hom}(M, R^1).$

$$R^{1^{\vee}} \cong R^{1}$$

 $M \otimes M^{\vee} \to R^{1}$ $R^{1} \otimes R^{1^{\vee}} \xrightarrow{\sim} R^{1}$

$$\sum_{L:R\text{-}\mathrm{Mod}} \|L \cong R^1\|$$

$$\sum_{L:R\text{-}\mathrm{Mod}} \|L \cong R^1\|$$

Is pointed (by R^1), connected, has loop space $Aut(R^1) \cong R^{\times}$.

$$BR^{\times} \coloneqq \sum_{L:R-\mathrm{Mod}} \|L \cong R^1\|$$

Is pointed (by R^1), connected, has loop space $Aut(R^1) \cong R^{\times}$.

$$BR^{\times} \coloneqq \sum_{L:R-\mathrm{Mod}} \|L \cong R^1\|$$

Is pointed (by R^1), connected, has loop space $Aut(R^1) \cong R^{\times}$.

We have operations

 $-\otimes -: BR^{\times} \times BR^{\times} \to BR^{\times}$ $-^{\vee}: BR^{\times} \to BR^{\times}$

$$BR^{\times} \coloneqq \sum_{L:R ext{-Mod}} \|L \cong R^1\|$$

Is pointed (by R^1), connected, has loop space $Aut(R^1) \cong R^{\times}$.

We have operations

with:

 $- \otimes - : BR^{\times} \times BR^{\times} \to BR^{\times}$ $-^{\vee} : BR^{\times} \to BR^{\times}$ $R^{1} \otimes L = L$

$$L\otimes L^{\vee}=R^{1}$$

Definition A *line bundle* on X is a map $X \to BR^{\times}$.

Definition A *line bundle* on X is a map $X \to BR^{\times}$.

We always have the *trivial* line bundle $X \to BR^{\times}$, $x \mapsto R^1$.

Definition A *line bundle* on X is a map $X \to BR^{\times}$.

We always have the *trivial* line bundle $X \to BR^{\times}$, $x \mapsto R^1$. We have pointwise operations $- \otimes -$ and $-^{\vee}$ on $X \to BR^{\times}$.

Definition A *line bundle* on X is a map $X \to BR^{\times}$.

We always have the *trivial* line bundle $X \to BR^{\times}$, $x \mapsto R^1$. We have pointwise operations $- \otimes -$ and $-^{\vee}$ on $X \to BR^{\times}$.

Definition The *Picard group* of X is

$$\operatorname{Pic}(X) \coloneqq \|X \to BR^{\times}\|_{\operatorname{set}}.$$

Recall:
$$\mathbb{P}^n := \sum_{L \subseteq R^{n+1} \text{ sub-module}} \|L \cong R^1\|$$

The *tautological line bundle* on \mathbb{P}^n is:

$$\mathcal{O}(-1): \mathbb{P}^n \to BR^{ imes}$$

 $L \mapsto L$

$$\mathsf{Recall:} \ \mathbb{P}^n \coloneqq \sum_{L \subseteq R^{n+1} \text{ sub-module}} \|L \cong R^1\|$$

The *tautological line bundle* on \mathbb{P}^n is:

$$\mathcal{O}(-1):\mathbb{P}^n o BR^ imes \ L\mapsto L$$

Define $\mathcal{O}(d) \coloneqq \mathcal{O}(-1)^{\otimes -d}$ for every $d : \mathbb{Z}$.

$$\mathsf{Recall:} \ \mathbb{P}^n \coloneqq \sum_{L \subseteq \ R^{n+1} \ \mathsf{sub-module}} \|L \cong R^1\|$$

The *tautological line bundle* on \mathbb{P}^n is:

$$\mathcal{O}(-1):\mathbb{P}^n o BR^ imes \ L\mapsto L$$

Define
$$\mathcal{O}(d) \coloneqq \mathcal{O}(-1)^{\otimes -d}$$
 for every $d : \mathbb{Z}$.

Fact: $\mathcal{O}(-): \mathbb{Z} \to \operatorname{Pic}(\mathbb{P}^n)$ is injective.

$$\mathsf{Recall:} \ \mathbb{P}^n \coloneqq \sum_{L \subseteq \ R^{n+1} \ \mathsf{sub-module}} \|L \cong R^1\|$$

The *tautological line bundle* on \mathbb{P}^n is:

$$\mathcal{O}(-1): \mathbb{P}^n \to BR^{\times}$$

 $L \mapsto L$

Define
$$\mathcal{O}(d) \coloneqq \mathcal{O}(-1)^{\otimes -d}$$
 for every $d : \mathbb{Z}$.

Fact: $\mathcal{O}(-): \mathbb{Z} \to \operatorname{Pic}(\mathbb{P}^n)$ is injective.

Q: Are there other line bundles on \mathbb{P}^n ?

Theorem

For every line bundle $L : \mathbb{P}^n \to BR^{\times}$ there is a number $d : \mathbb{Z}$ such that $||L = \mathcal{O}(d)||$. Thus:

$$\mathcal{O}(-):\mathbb{Z}\xrightarrow{\sim}\operatorname{Pic}(\mathbb{P}^n).$$

Theorem

For every line bundle $L : \mathbb{P}^n \to BR^{\times}$ there is a number $d : \mathbb{Z}$ such that $||L = \mathcal{O}(d)||$. Thus:

$$\mathcal{O}(-):\mathbb{Z}\xrightarrow{\sim}\operatorname{Pic}(\mathbb{P}^n).$$

Notation: deg(L) := d

Theorem

For every line bundle $L : \mathbb{P}^n \to BR^{\times}$ there is a number $d : \mathbb{Z}$ such that $||L = \mathcal{O}(d)||$. Thus:

$$\mathcal{O}(-):\mathbb{Z}\xrightarrow{\sim}\operatorname{Pic}(\mathbb{P}^n).$$

Notation: $deg(L) \coloneqq d$

Case n = 1: Needs non-trivial algebra (Horrocks' theorem).

Theorem

For every line bundle $L : \mathbb{P}^n \to BR^{\times}$ there is a number $d : \mathbb{Z}$ such that $||L = \mathcal{O}(d)||$. Thus:

$$\mathcal{O}(-):\mathbb{Z}\xrightarrow{\sim}\operatorname{Pic}(\mathbb{P}^n).$$

Notation: $deg(L) \coloneqq d$

Case n = 1: Needs non-trivial algebra (Horrocks' theorem).

Plan for $n \ge 2$:

- Strengthen the n = 1 case to a non-truncated statement.
- Adjust L so that we can expect ||L = O(0)||.
- Use interpolation.

Strengthen the n = 1 case to a non-truncated statement.

Strengthen the n = 1 case to a non-truncated statement.

$$egin{array}{cccc} \mathbb{Z} & \stackrel{\sim}{
ightarrow} & \|\mathbb{P}^1
ightarrow BR^{ imes}\|_{ ext{set}} \ d & \mapsto & |\mathcal{O}(d)| \end{array}$$

Strengthen the n = 1 case to a non-truncated statement.

$$egin{array}{cccc} \mathbb{Z} & \stackrel{\sim}{
ightarrow} & \|\mathbb{P}^1
ightarrow BR^{ imes}\|_{ ext{set}} \ d & \mapsto & |\mathcal{O}(d)| \end{array}$$

Fact: Any line bundle $L : \mathbb{P}^1 \to BR^{\times}$ has the same automorphism group $(L = L) \cong R^{\times}$.

Strengthen the n = 1 case to a non-truncated statement.

$$egin{array}{cccc} \mathbb{Z} & \stackrel{\sim}{
ightarrow} & \|\mathbb{P}^1
ightarrow BR^{ imes}\|_{ ext{set}} \ d & \mapsto & |\mathcal{O}(d)| \end{array}$$

Fact: Any line bundle $L : \mathbb{P}^1 \to BR^{\times}$ has the same automorphism group $(L = L) \cong R^{\times}$.

$$egin{array}{cccc} \mathbb{Z} imes BR^{ imes} & \stackrel{\sim}{
ightarrow} & (\mathbb{P}^1
ightarrow BR^{ imes}) \ (d,L) & \mapsto & L\otimes \mathcal{O}(d) \end{array}$$

Strengthen the n = 1 case to a non-truncated statement.

$$egin{array}{cccc} \mathbb{Z} & \stackrel{\sim}{
ightarrow} & \|\mathbb{P}^1
ightarrow BR^{ imes}\|_{ ext{set}} \ d & \mapsto & |\mathcal{O}(d)| \end{array}$$

Fact: Any line bundle $L : \mathbb{P}^1 \to BR^{\times}$ has the same automorphism group $(L = L) \cong R^{\times}$.

$$egin{array}{rcl} \mathbb{Z} imes BR^{ imes} & \stackrel{\sim}{
ightarrow} & (\mathbb{P}^1
ightarrow BR^{ imes}) \ (d,L) & \mapsto & L\otimes \mathcal{O}(d) \end{array}$$

Corollary: If deg(L) = 0 then we have $\prod_{p,p':\mathbb{P}^1} L(p) = L(p')$.

Adjust *L* so that we can expect ||L = O(0)||.

Adjust *L* so that we can expect ||L = O(0)||.

Fix a standard plane $P_0 : \mathbb{G}_2(\mathbb{R}^{n+1})$. Consider $\deg(L|_{\mathbb{G}_1(P_0)}) : \mathbb{Z}$.

Adjust *L* so that we can expect ||L = O(0)||.

Fix a standard plane P_0 : $\mathbb{G}_2(\mathbb{R}^{n+1})$. Consider $\deg(L|_{\mathbb{G}_1(P_0)})$: \mathbb{Z} .

We can arrange $\deg(L|_{\mathbb{G}_1(P_0)}) = 0$ by replacing L with some $L \otimes \mathcal{O}(d)$.

Adjust *L* so that we can expect ||L = O(0)||.

Fix a standard plane $P_0 : \mathbb{G}_2(\mathbb{R}^{n+1})$. Consider $\deg(L|_{\mathbb{G}_1(P_0)}) : \mathbb{Z}$.

We can arrange $\deg(L|_{\mathbb{G}_1(P_0)}) = 0$ by replacing L with some $L \otimes \mathcal{O}(d)$.

Fact: $\mathbb{G}_2(\mathbb{R}^{n+1})$ is indecomposable.

Adjust *L* so that we can expect ||L = O(0)||.

Fix a standard plane $P_0 : \mathbb{G}_2(\mathbb{R}^{n+1})$. Consider $\deg(L|_{\mathbb{G}_1(P_0)}) : \mathbb{Z}$.

We can arrange $\deg(L|_{\mathbb{G}_1(P_0)}) = 0$ by replacing L with some $L \otimes \mathcal{O}(d)$.

Fact: $\mathbb{G}_2(\mathbb{R}^{n+1})$ is indecomposable.

So $\deg(L|_{\mathbb{G}_1(P)}) = 0$ for every plane $P : \mathbb{G}_2(\mathbb{R}^{n+1})$.

Adjust *L* so that we can expect ||L = O(0)||.

Fix a standard plane $P_0 : \mathbb{G}_2(\mathbb{R}^{n+1})$. Consider $\deg(L|_{\mathbb{G}_1(P_0)}) : \mathbb{Z}$.

We can arrange $\deg(L|_{\mathbb{G}_1(P_0)}) = 0$ by replacing L with some $L \otimes \mathcal{O}(d)$.

Fact: $\mathbb{G}_2(\mathbb{R}^{n+1})$ is indecomposable.

So $\deg(L|_{\mathbb{G}_1(P)}) = 0$ for every plane $P : \mathbb{G}_2(\mathbb{R}^{n+1})$.

Thus: L(p) = L(p') for all p, p' on $\mathbb{G}_1(P)$.

For $p \neq p'$ in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p, p' \rangle)}) = 0$, so:

For $p \neq p'$ in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p, p' \rangle)}) = 0$, so: $p \neq p' \quad \rightarrow \quad L(p) = L(p')$

For
$$p \neq p'$$
 in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p, p' \rangle)}) = 0$, so:
 $p \neq p' \quad \rightarrow \quad L(p) = L(p')$

Fix standard points $p_0, p_1 : \mathbb{P}^n$.

$L = \operatorname{const} L(p_0)$	on $\mathbb{P}^n \setminus \{p_0\}$
$L = \operatorname{const} L(p_1)$	on $\mathbb{P}^n \setminus \{p_1\}$

For
$$p \neq p'$$
 in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p, p' \rangle)}) = 0$, so:
 $p \neq p' \rightarrow L(p) = L(p')$

 $L = \operatorname{const} L(p_0) \quad \text{on } \mathbb{P}^n \setminus \{p_0\}$ $L = \operatorname{const} L(p_1) \quad \text{on } \mathbb{P}^n \setminus \{p_1\}$

For
$$p \neq p'$$
 in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p, p' \rangle)}) = 0$, so:
 $p \neq p' \quad \rightarrow \quad L(p) = L(p')$

 $L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_0\}$ $L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_1\}$

For
$$p \neq p'$$
 in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p, p' \rangle)}) = 0$, so:
 $p \neq p' \rightarrow L(p) = L(p')$

 $L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_0\}$ $L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_1\}$

For $p : \mathbb{P}^n \setminus \{p_0, p_1\}$ we have *two* identifications:

$$R^1 = L(p) = R^1$$

For
$$p \neq p'$$
 in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p, p' \rangle)}) = 0$, so:
 $p \neq p' \rightarrow L(p) = L(p')$

 $L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_0\}$ $L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_1\}$

For $p : \mathbb{P}^n \setminus \{p_0, p_1\}$ we have *two* identifications:

$$R^1 = L(p) = R^1$$

Fact: Every function $\mathbb{P}^n \setminus \{p_0, p_1\} \to R^{\times}$ is constant.

For
$$p \neq p'$$
 in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p, p' \rangle)}) = 0$, so:
 $p \neq p' \rightarrow L(p) = L(p')$

 $L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_0\}$ $L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_1\}$

For $p : \mathbb{P}^n \setminus \{p_0, p_1\}$ we have *two* identifications:

$$R^1 = L(p) = R^1$$

Fact: Every function $\mathbb{P}^n \setminus \{p_0, p_1\} \to R^{\times}$ is constant.

So we conclude: L = O(0).

Recall: Every function $\mathbb{R}^m \to \mathbb{R}^n$ is given by *n* polynomials in *m* variables.

Recall: Every function $\mathbb{R}^m \to \mathbb{R}^n$ is given by *n* polynomials in *m* variables.

Theorem

Every function $f : \mathbb{P}^m \to \mathbb{P}^n$ is given by n + 1 homogeneous polynomials of some degree d in m + 1 variables.

Recall: Every function $\mathbb{R}^m \to \mathbb{R}^n$ is given by *n* polynomials in *m* variables.

Theorem

Every function $f : \mathbb{P}^m \to \mathbb{P}^n$ is given by n + 1 homogeneous polynomials of some degree d in m + 1 variables.

Core step: $d := \deg(\mathcal{O}(1) \circ f)$

Recall: Every function $\mathbb{R}^m \to \mathbb{R}^n$ is given by *n* polynomials in *m* variables.

Theorem

Every function $f : \mathbb{P}^m \to \mathbb{P}^n$ is given by n + 1 homogeneous polynomials of some degree d in m + 1 variables.

Core step: $d := \deg(\mathcal{O}(1) \circ f)$

Corollary

Every automorphism $\mathbb{P}^n \xrightarrow{\sim} \mathbb{P}^n$ is given by an invertible matrix, unique up to scalar multiplication.

 $\operatorname{Aut}(\mathbb{P}^n) \cong \operatorname{PGL}_{n+1}(R)$