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In this talk:
» SAG at a glance
P projective space P
» line bundles, Pic(X)
> classification of line bundles on P”
» application to Aut(P")

All results are well-known in (external) algebraic geometry,
but we present new, synthetic proofs using higher types.
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Synthetic algebraic geometry
k-Schy, < Zaryg = Sh(k-Alg; , P, Jzar)

We interpret HoTT internally in Zarg(oo’l) and write R for the

structure sheaf:

k-Algs ,, — Set

A= A
» Ris aring.
& _ _ » Every function f : R > R is
» Every x: R with x #0 is a polynomial
invertible. '
invertible ’ » But we can't determine
» But we don't have deg(f) : N

» Every function R™ — R" is
given by n polynomials in m
variables.

» Every x : R" with x # 0
generates a sub-module
(x) C R" with (x) = R!.
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Some examples of schemes

affine space A" := R"
multiplicative group G, = R* = R\ {0}

projective space P" := Z |IL = RY||
L C R™! sub-module
— Gl(RnJrl)
Grassmannian G,(R") = Z |P = RK||

P C R" sub-module
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Interpolating between two points in P”

Let p, p’ : P" with p # p'.

Consider the sub-module (p, p’) C R™1.
Fact: |[(p, p) = R?||

So we have
Gi((p,p)) C P"
with
IG1({p, p)) = P*|.

We say: G1({(p, p’)) is the “line” interpolating between p and p’.
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All functions P” — R are constant

Proposition

All functions P" — R are constant.

Case n = 1: Omitted.

Case n > 2:

Let f : P" — R be given.

For p,p’ : P" with p # p’ we have ||G1({p, p')) = P!||.
So flg,((p,py) Must be constant (by case n = 1).

In particular: p # p' — f(p) = f(p')

Fix po # p1. Then:

pP#p vV pFp
f(p) =f(po) Vv f(p)="f(p1)=f(po)
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Recap of linear algebra (tensor product)

The following is true for any ring R.

— ® — : R-Mod x R-Mod — R-Mod

RreM=M
R'® R' = R!
The dual module of M is

M"Y = Hom(M, R?).

Mo MY — R

~

Rl e RYY = RY
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The type of abstract lines

BR* = 3 |L=RY
L:R-Mod

Is pointed (by R'), connected, has loop space Aut(R!) = R*.
We have operations
—® —: BR* x BR* — BR*
—V': BR* - BR*

with:
Rlol=L

Lo LY =R!
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Line bundles

Definition
A line bundle on X is a map X — BR*.

We always have the trivial line bundle X — BR*, x — R™.
We have pointwise operations — ® — and — on X — BRX*.

Definition
The Picard group of X is

Pic(X) = || X = BR™||set-
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Line bundles on P"

Recall: P" = > L= RY

L C R™! sub-module
The tautological line bundle on P" is:

O(-1) : P" — BR*
L— L

Define O(d) := O(—=1)®" for every d : Z.
Fact: O(—) : Z — Pic(P") is injective.

Q: Are there other line bundles on P"?
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Theorem
For every line bundle L : P" — BR* there is a number d : 7, such
that ||L = O(d)||. Thus:

O(-) : Z = Pic(P").
Notation: deg(L) :=d

Case n = 1: Needs non-trivial algebra (Horrocks' theorem).
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Pic(P") = Z

» Strengthen the n = 1 case to a non-truncated statement.

Z = |IPY = BR®|set
d — |O(d)]

Fact: Any line bundle L : P! — BR* has the same automorphism
group (L= L) = R*.

~

Zx BR* = (P! — BRX)
(d,L) — L®O(d)

Corollary: If deg(L) = 0 then we have [], , p1 L(p) = L(p").
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Pic(P") = Z

» Adjust L so that we can expect ||L = O(0)]|.

Fix a standard plane Py : G2(R""!). Consider deg(L|g,(py)) : Z-

We can arrange deg(L|g,(p,)) = 0 by replacing L with some
L ® O(d).

Fact: Gy(R™1) is indecomposable.
So deg(L|g,(p)) = O for every plane P : Go(R™1).

Thus: L(p) = L(p') for all p,p’ on G1(P).
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» Use interpolation.

For p # p' in P" we have deg(L|g,((p,pr}))) = 0, so:

p#p  — Lp)=L(p)

Fix standard points pg, p1 : P and paths L(po) = R, L(p1) = RL.

L =constRY onP"\ {po}
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For p: P"\ {po, p1} we have two identifications:
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Pic(P") = Z

» Use interpolation.

For p # p' in P" we have deg(L|g,((p,pr}))) = 0, so:

p#p  — Lp)=L(p)

Fix standard points pg, p1 : P and paths L(po) = R, L(p1) = RL.

L =constRY onP"\ {po}
L =constR? onP"\ {p1}

For p: P"\ {po, p1} we have two identifications:
R' = L(p) =R
Fact: Every function P\ {po, p1} — R* is constant.

So we conclude: L = O(0).
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Application: Aut(P")

Recall: Every function R™ — R" is given by n polynomials in m
variables.

Theorem
Every function f : P™ — P" js given by n + 1 homogeneous
polynomials of some degree d in m + 1 variables.

Core step: d = deg(O(1) o f)

Corollary

Every automorphism P" = P" is given by an invertible matrix,
unique up to scalar multiplication.

Aut(P") = PGL,1(R)



