Projective Space and Line Bundles in Synthetic Algebraic Geometry

Matthias Hutzler
j.w.w. Felix Cherubini, Thierry Coquand, David Wärn

HoTT/UF 2024
Leuven / online

Slides and video recording licensed under CC BY 4.0.

In this talk:

- SAG at a glance
- projective space \mathbb{P}^{n}
- line bundles, $\operatorname{Pic}(X)$
- classification of line bundles on \mathbb{P}^{n}
- application to $\operatorname{Aut}\left(\mathbb{P}^{n}\right)$

All results are well-known in (external) algebraic geometry, but we present new, synthetic proofs using higher types.

Synthetic algebraic geometry

$$
k-\text { Sch }_{\text {f.p. }} \quad \hookrightarrow \quad \operatorname{Zar}_{k}:=\operatorname{Sh}\left(k-\operatorname{Alg}_{\text {f.p. }}{ }^{\mathrm{op}}, J_{\mathrm{Zar}}\right)
$$

Synthetic algebraic geometry

$$
k-\text { Sch }_{\text {f.p. }} \quad \hookrightarrow \quad \operatorname{Zar}_{k}:=\operatorname{Sh}\left(k-\operatorname{Alg}_{\text {f.p. }}{ }^{\mathrm{op}}, J_{\mathrm{Zar}}\right)
$$

We interpret HoTT internally in $\operatorname{Zar}_{k}^{(\infty, 1)}$ and write R for the structure sheaf:

$$
\begin{aligned}
k-\mathrm{Alg}_{\text {f.p. }} & \rightarrow \text { Set } \\
A & \mapsto A
\end{aligned}
$$

Synthetic algebraic geometry

$$
k-\text { Sch }_{\text {f.p. }} \quad \hookrightarrow \quad \operatorname{Zar}_{k}:=\operatorname{Sh}\left(k-\operatorname{Alg}_{\text {f.p. }}{ }^{\mathrm{op}}, J_{\mathrm{Zar}}\right)
$$

We interpret HoTT internally in $\operatorname{Zar}_{k}^{(\infty, 1)}$ and write R for the structure sheaf:

$$
\begin{aligned}
k-\mathrm{Alg}_{\text {f.p. }} & \rightarrow \text { Set } \\
A & \mapsto A
\end{aligned}
$$

- R is a ring.
- Every $x: R$ with $x \neq 0$ is invertible.
- But we don't have

$$
x=0 \vee x \neq 0 .
$$

- Every $x: R^{n}$ with $x \neq 0$ generates a sub-module $\langle x\rangle \subseteq R^{n}$ with $\langle x\rangle \cong R^{1}$.
- Every function $f: R \rightarrow R$ is a polynomial.
- But we can't determine $\operatorname{deg}(f): \mathbb{N}$.
- Every function $R^{m} \rightarrow R^{n}$ is given by n polynomials in m variables.

Some examples of schemes

affine space $\mathbb{A}^{n}:=R^{n}$

Some examples of schemes

affine space $\mathbb{A}^{n}:=R^{n}$ multiplicative group $\mathbb{G}_{m}:=R^{\times}=R \backslash\{0\}$

Some examples of schemes

affine space $\mathbb{A}^{n}:=R^{n}$
multiplicative group $\mathbb{G}_{m}:=R^{\times}=R \backslash\{0\}$

$$
\text { projective space } \mathbb{P}^{n}:=\sum_{L \subseteq R^{n+1} \text { sub-module }}\left\|L \cong R^{1}\right\|
$$

Some examples of schemes

affine space $\mathbb{A}^{n}:=R^{n}$
multiplicative group $\mathbb{G}_{m}:=R^{\times}=R \backslash\{0\}$

$$
\text { projective space } \mathbb{P}^{n}:=\sum_{L \subseteq R^{n+1} \text { sub-module }}\left\|L \cong R^{1}\right\|
$$

$$
\text { Grassmannian } \mathbb{G}_{k}\left(R^{n}\right):=\sum_{P \subseteq R^{n} \text { sub-module }}\left\|P \cong R^{k}\right\|
$$

Some examples of schemes

affine space $\mathbb{A}^{n}:=R^{n}$
multiplicative group $\mathbb{G}_{m}:=R^{\times}=R \backslash\{0\}$

$$
\begin{aligned}
& \text { projective space } \mathbb{P}^{n}:= \\
& \text { Grassmannian } \sum_{\substack{L \subseteq R^{n+1} \text { sub-module } \\
\\
\\
\\
\\
\\
\\
\left(\mathbb{G}_{1}\left(R^{n}\right) \\
\right. \text { G }}}\left\|L \cong \sum_{P \subseteq R^{n} \text { sub-module }}\right\| P \cong R^{k} \|
\end{aligned}
$$

Interpolating between two points in \mathbb{P}^{n}

Let $p, p^{\prime}: \mathbb{P}^{n}$ with $p \neq p^{\prime}$.
Consider the sub-module $\left\langle p, p^{\prime}\right\rangle \subseteq R^{n+1}$.

Interpolating between two points in \mathbb{P}^{n}

Let $p, p^{\prime}: \mathbb{P}^{n}$ with $p \neq p^{\prime}$.
Consider the sub-module $\left\langle p, p^{\prime}\right\rangle \subseteq R^{n+1}$.
Fact: $\left\|\left\langle p, p^{\prime}\right\rangle \cong R^{2}\right\|$

Interpolating between two points in \mathbb{P}^{n}

Let $p, p^{\prime}: \mathbb{P}^{n}$ with $p \neq p^{\prime}$.
Consider the sub-module $\left\langle p, p^{\prime}\right\rangle \subseteq R^{n+1}$.
Fact: $\left\|\left\langle p, p^{\prime}\right\rangle \cong R^{2}\right\|$
So we have

$$
\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right) \subseteq \mathbb{P}^{n}
$$

with

$$
\left\|\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)=\mathbb{P}^{1}\right\|
$$

Interpolating between two points in \mathbb{P}^{n}

Let $p, p^{\prime}: \mathbb{P}^{n}$ with $p \neq p^{\prime}$.
Consider the sub-module $\left\langle p, p^{\prime}\right\rangle \subseteq R^{n+1}$.
Fact: $\left\|\left\langle p, p^{\prime}\right\rangle \cong R^{2}\right\|$
So we have

$$
\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right) \subseteq \mathbb{P}^{n}
$$

with

$$
\left\|\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)=\mathbb{P}^{1}\right\|
$$

We say: $\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)$ is the "line" interpolating between p and p^{\prime}.

All functions $\mathbb{P}^{n} \rightarrow R$ are constant

Proposition
All functions $\mathbb{P}^{n} \rightarrow R$ are constant.

All functions $\mathbb{P}^{n} \rightarrow R$ are constant

Proposition
All functions $\mathbb{P}^{n} \rightarrow R$ are constant.

Case $n=1$: Omitted.

All functions $\mathbb{P}^{n} \rightarrow R$ are constant

Proposition
All functions $\mathbb{P}^{n} \rightarrow R$ are constant.

Case $n=1$: Omitted.

Case $n \geq 2$:

All functions $\mathbb{P}^{n} \rightarrow R$ are constant

Proposition
All functions $\mathbb{P}^{n} \rightarrow R$ are constant.

Case $n=1$: Omitted.
Case $n \geq 2$:
Let $f: \mathbb{P}^{n} \rightarrow R$ be given.

All functions $\mathbb{P}^{n} \rightarrow R$ are constant

Proposition
All functions $\mathbb{P}^{n} \rightarrow R$ are constant.

Case $n=1$: Omitted.

Case $n \geq 2$:
Let $f: \mathbb{P}^{n} \rightarrow R$ be given.
For $p, p^{\prime}: \mathbb{P}^{n}$ with $p \neq p^{\prime}$ we have $\left\|\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)=\mathbb{P}^{1}\right\|$.

All functions $\mathbb{P}^{n} \rightarrow R$ are constant

Proposition
All functions $\mathbb{P}^{n} \rightarrow R$ are constant.

Case $n=1$: Omitted.

Case $n \geq 2$:
Let $f: \mathbb{P}^{n} \rightarrow R$ be given.
For $p, p^{\prime}: \mathbb{P}^{n}$ with $p \neq p^{\prime}$ we have $\left\|\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)=\mathbb{P}^{1}\right\|$.
So $\left.f\right|_{\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)}$ must be constant (by case $n=1$).

All functions $\mathbb{P}^{n} \rightarrow R$ are constant

Proposition
All functions $\mathbb{P}^{n} \rightarrow R$ are constant.

Case $n=1$: Omitted.

Case $n \geq 2$:
Let $f: \mathbb{P}^{n} \rightarrow R$ be given.
For $p, p^{\prime}: \mathbb{P}^{n}$ with $p \neq p^{\prime}$ we have $\left\|\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)=\mathbb{P}^{1}\right\|$.
So $\left.f\right|_{\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)}$ must be constant (by case $n=1$).
In particular: $p \neq p^{\prime} \rightarrow f(p)=f\left(p^{\prime}\right)$

All functions $\mathbb{P}^{n} \rightarrow R$ are constant

Proposition
All functions $\mathbb{P}^{n} \rightarrow R$ are constant.

Case $n=1$: Omitted.

Case $n \geq 2$:
Let $f: \mathbb{P}^{n} \rightarrow R$ be given.
For $p, p^{\prime}: \mathbb{P}^{n}$ with $p \neq p^{\prime}$ we have $\left\|\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)=\mathbb{P}^{1}\right\|$.
So $\left.f\right|_{\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)}$ must be constant (by case $n=1$).
In particular: $p \neq p^{\prime} \rightarrow f(p)=f\left(p^{\prime}\right)$
Fix $p_{0} \neq p_{1}$. Then:

$$
\begin{array}{rll}
p \neq p_{0} & \vee & p \neq p_{1} \\
f(p)=f\left(p_{0}\right) & \vee & f(p)=f\left(p_{1}\right)=f\left(p_{0}\right)
\end{array}
$$

Recap of linear algebra (tensor product)

The following is true for any ring R.

$$
-\otimes-: R-\operatorname{Mod} \times R-\operatorname{Mod} \rightarrow R-\operatorname{Mod}
$$

Recap of linear algebra (tensor product)

The following is true for any ring R.

$$
\begin{gathered}
-\otimes-: R-\operatorname{Mod} \times R-\operatorname{Mod} \rightarrow R \text {-Mod } \\
R^{1} \otimes M \cong M \\
R^{1} \otimes R^{1} \cong R^{1}
\end{gathered}
$$

Recap of linear algebra (tensor product)

The following is true for any ring R.

$$
\begin{gathered}
-\otimes-: R-\operatorname{Mod} \times R-\operatorname{Mod} \rightarrow R \text {-Mod } \\
R^{1} \otimes M \cong M \\
R^{1} \otimes R^{1} \cong R^{1}
\end{gathered}
$$

The dual module of M is

$$
M^{\vee}:=\operatorname{Hom}\left(M, R^{1}\right)
$$

Recap of linear algebra (tensor product)

The following is true for any ring R.

$$
\begin{gathered}
-\otimes-: R-\operatorname{Mod} \times R-\operatorname{Mod} \rightarrow R \text {-Mod } \\
R^{1} \otimes M \cong M \\
R^{1} \otimes R^{1} \cong R^{1}
\end{gathered}
$$

The dual module of M is

$$
\begin{gathered}
M^{\vee}:=\operatorname{Hom}\left(M, R^{1}\right) . \\
R^{1^{\vee}} \cong R^{1}
\end{gathered}
$$

Recap of linear algebra (tensor product)

The following is true for any ring R.

$$
\begin{gathered}
-\otimes-: R-\operatorname{Mod} \times R-\operatorname{Mod} \rightarrow R \text {-Mod } \\
R^{1} \otimes M \cong M \\
R^{1} \otimes R^{1} \cong R^{1}
\end{gathered}
$$

The dual module of M is

$$
\begin{gathered}
M^{\vee}:=\operatorname{Hom}\left(M, R^{1}\right) . \\
R^{1^{\vee}} \cong R^{1} \\
M \otimes M^{\vee} \rightarrow R^{1} \\
R^{1} \otimes R^{1^{\vee}} \xrightarrow{\sim} R^{1}
\end{gathered}
$$

The type of abstract lines

$$
\sum_{L: R \text {-Mod }}\left\|L \cong R^{1}\right\|
$$

The type of abstract lines

$$
\sum_{L: R-\operatorname{Mod}}\left\|L \cong R^{1}\right\|
$$

Is pointed (by R^{1}), connected, has loop space $\operatorname{Aut}\left(R^{1}\right) \cong R^{\times}$.

The type of abstract lines

$$
B R^{\times}:=\sum_{L: R-\operatorname{Mod}}\left\|L \cong R^{1}\right\|
$$

Is pointed (by R^{1}), connected, has loop space $\operatorname{Aut}\left(R^{1}\right) \cong R^{\times}$.

The type of abstract lines

$$
B R^{\times}:=\sum_{L: R-\operatorname{Mod}}\left\|L \cong R^{1}\right\|
$$

Is pointed (by R^{1}), connected, has loop space $\operatorname{Aut}\left(R^{1}\right) \cong R^{\times}$.
We have operations

$$
\begin{gathered}
-\otimes-: B R^{\times} \times B R^{\times} \rightarrow B R^{\times} \\
-\vee: B R^{\times} \rightarrow B R^{\times}
\end{gathered}
$$

The type of abstract lines

$$
B R^{\times}:=\sum_{L: R-\operatorname{Mod}}\left\|L \cong R^{1}\right\|
$$

Is pointed (by R^{1}), connected, has loop space $\operatorname{Aut}\left(R^{1}\right) \cong R^{\times}$.
We have operations

$$
\begin{gathered}
-\otimes-: B R^{\times} \times B R^{\times} \rightarrow B R^{\times} \\
-\vee: B R^{\times} \rightarrow B R^{\times}
\end{gathered}
$$

with:

$$
\begin{gathered}
R^{1} \otimes L=L \\
L \otimes L^{\vee}=R^{1}
\end{gathered}
$$

Line bundles

Definition
A line bundle on X is a map $X \rightarrow B R^{\times}$.

Line bundles

Definition
A line bundle on X is a map $X \rightarrow B R^{\times}$.

We always have the trivial line bundle $X \rightarrow B R^{\times}, x \mapsto R^{1}$.

Line bundles

Definition

A line bundle on X is a map $X \rightarrow B R^{\times}$.

We always have the trivial line bundle $X \rightarrow B R^{\times}, x \mapsto R^{1}$. We have pointwise operations $-\otimes-$ and $-^{\vee}$ on $X \rightarrow B R^{\times}$.

Line bundles

Definition
A line bundle on X is a map $X \rightarrow B R^{\times}$.

We always have the trivial line bundle $X \rightarrow B R^{\times}, x \mapsto R^{1}$. We have pointwise operations $-\otimes-$ and $-^{\vee}$ on $X \rightarrow B R^{\times}$.

Definition
The Picard group of X is

$$
\operatorname{Pic}(X):=\left\|X \rightarrow B R^{\times}\right\|_{\text {set }} .
$$

Line bundles on \mathbb{P}^{n}

Recall: $\mathbb{P}^{n}:=\sum_{L \subseteq R^{n+1} \text { sub-module }}\left\|L \cong R^{1}\right\|$
The tautological line bundle on \mathbb{P}^{n} is:

$$
\begin{aligned}
\mathcal{O}(-1): \mathbb{P}^{n} & \rightarrow B R^{\times} \\
L & \mapsto L
\end{aligned}
$$

Line bundles on \mathbb{P}^{n}

Recall: $\mathbb{P}^{n}:=\sum_{L \subseteq R^{n+1} \text { sub-module }}\left\|L \cong R^{1}\right\|$
The tautological line bundle on \mathbb{P}^{n} is:

$$
\begin{aligned}
\mathcal{O}(-1): \mathbb{P}^{n} & \rightarrow B R^{\times} \\
L & \mapsto L
\end{aligned}
$$

Define $\mathcal{O}(d):=\mathcal{O}(-1)^{\otimes-d}$ for every $d: \mathbb{Z}$.

Line bundles on \mathbb{P}^{n}

Recall: $\mathbb{P}^{n}:=\sum_{L \subseteq R^{n+1} \text { sub-module }}\left\|L \cong R^{1}\right\|$
The tautological line bundle on \mathbb{P}^{n} is:

$$
\begin{aligned}
\mathcal{O}(-1): \mathbb{P}^{n} & \rightarrow B R^{\times} \\
L & \mapsto L
\end{aligned}
$$

Define $\mathcal{O}(d):=\mathcal{O}(-1)^{\otimes-d}$ for every $d: \mathbb{Z}$.
Fact: $\mathcal{O}(-): \mathbb{Z} \rightarrow \operatorname{Pic}\left(\mathbb{P}^{n}\right)$ is injective.

Line bundles on \mathbb{P}^{n}

Recall: $\mathbb{P}^{n}:=\sum_{L \subseteq R^{n+1} \text { sub-module }}\left\|L \cong R^{1}\right\|$
The tautological line bundle on \mathbb{P}^{n} is:

$$
\begin{aligned}
\mathcal{O}(-1): \mathbb{P}^{n} & \rightarrow B R^{\times} \\
L & \mapsto L
\end{aligned}
$$

Define $\mathcal{O}(d):=\mathcal{O}(-1)^{\otimes-d}$ for every $d: \mathbb{Z}$.
Fact: $\mathcal{O}(-): \mathbb{Z} \rightarrow \operatorname{Pic}\left(\mathbb{P}^{n}\right)$ is injective.
Q: Are there other line bundles on \mathbb{P}^{n} ?

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

Theorem
For every line bundle $L: \mathbb{P}^{n} \rightarrow B R^{\times}$there is a number $d: \mathbb{Z}$ such that $\|L=\mathcal{O}(d)\|$. Thus:

$$
\mathcal{O}(-): \mathbb{Z} \xrightarrow{\sim} \operatorname{Pic}\left(\mathbb{P}^{n}\right)
$$

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

Theorem
For every line bundle $L: \mathbb{P}^{n} \rightarrow B R^{\times}$there is a number $d: \mathbb{Z}$ such that $\|L=\mathcal{O}(d)\|$. Thus:

$$
\mathcal{O}(-): \mathbb{Z} \xrightarrow{\sim} \operatorname{Pic}\left(\mathbb{P}^{n}\right)
$$

Notation: $\operatorname{deg}(L):=d$

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

Theorem
For every line bundle $L: \mathbb{P}^{n} \rightarrow B R^{\times}$there is a number $d: \mathbb{Z}$ such that $\|L=\mathcal{O}(d)\|$. Thus:

$$
\mathcal{O}(-): \mathbb{Z} \xrightarrow{\sim} \operatorname{Pic}\left(\mathbb{P}^{n}\right)
$$

Notation: $\operatorname{deg}(L):=d$
Case $n=1$: Needs non-trivial algebra (Horrocks' theorem).

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

Theorem
For every line bundle $L: \mathbb{P}^{n} \rightarrow B R^{\times}$there is a number $d: \mathbb{Z}$ such that $\|L=\mathcal{O}(d)\|$. Thus:

$$
\mathcal{O}(-): \mathbb{Z} \xrightarrow{\sim} \operatorname{Pic}\left(\mathbb{P}^{n}\right)
$$

Notation: $\operatorname{deg}(L):=d$
Case $n=1$: Needs non-trivial algebra (Horrocks' theorem).
Plan for $n \geq 2$:

- Strengthen the $n=1$ case to a non-truncated statement.
- Adjust L so that we can expect $\|L=\mathcal{O}(0)\|$.
- Use interpolation.

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Strengthen the $n=1$ case to a non-truncated statement.

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Strengthen the $n=1$ case to a non-truncated statement.

$$
\begin{aligned}
\mathbb{Z} & \xrightarrow{\sim} \\
d & \mapsto \mathbb{P}^{1} \rightarrow B R^{\times} \|_{\text {set }} \\
d & |\mathcal{O}(d)|
\end{aligned}
$$

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Strengthen the $n=1$ case to a non-truncated statement.

$$
\begin{aligned}
\mathbb{Z} & \xrightarrow{\sim} \\
d & \mapsto \mathbb{P}^{1} \rightarrow B R^{\times} \|_{\text {set }} \\
d & |\mathcal{O}(d)|
\end{aligned}
$$

Fact: Any line bundle $L: \mathbb{P}^{1} \rightarrow B R^{\times}$has the same automorphism group $(L=L) \cong R^{\times}$.

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Strengthen the $n=1$ case to a non-truncated statement.

$$
\begin{aligned}
\mathbb{Z} & \xrightarrow{\sim} \\
d & \mapsto \mathbb{P}^{1} \rightarrow B R^{\times} \|_{\text {set }} \\
d & |\mathcal{O}(d)|
\end{aligned}
$$

Fact: Any line bundle $L: \mathbb{P}^{1} \rightarrow B R^{\times}$has the same automorphism group $(L=L) \cong R^{\times}$.

$$
\begin{aligned}
& \mathbb{Z} \times B R^{\times} \xrightarrow{\sim}\left(\mathbb{P}^{1} \rightarrow B R^{\times}\right) \\
&(d, L) \mapsto \\
& L \otimes \mathcal{O}(d)
\end{aligned}
$$

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Strengthen the $n=1$ case to a non-truncated statement.

$$
\begin{aligned}
\mathbb{Z} & \xrightarrow{\sim} \\
d & \mapsto \mathbb{P}^{1} \rightarrow B R^{\times} \|_{\text {set }} \\
d & |\mathcal{O}(d)|
\end{aligned}
$$

Fact: Any line bundle $L: \mathbb{P}^{1} \rightarrow B R^{\times}$has the same automorphism $\operatorname{group}(L=L) \cong R^{\times}$.

$$
\begin{aligned}
\mathbb{Z} \times B R^{\times} & \xrightarrow{\sim}\left(\mathbb{P}^{1} \rightarrow B R^{\times}\right) \\
(d, L) & \mapsto L \otimes \mathcal{O}(d)
\end{aligned}
$$

Corollary: If $\operatorname{deg}(L)=0$ then we have $\prod_{p, p^{\prime}: \mathbb{P}^{1}} L(p)=L\left(p^{\prime}\right)$.

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Adjust L so that we can expect $\|L=\mathcal{O}(0)\|$.

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Adjust L so that we can expect $\|L=\mathcal{O}(0)\|$.

Fix a standard plane $P_{0}: \mathbb{G}_{2}\left(R^{n+1}\right)$. Consider $\operatorname{deg}\left(L_{\mathbb{G}_{1}\left(P_{0}\right)}\right): \mathbb{Z}$.

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Adjust L so that we can expect $\|L=\mathcal{O}(0)\|$.

Fix a standard plane $P_{0}: \mathbb{G}_{2}\left(R^{n+1}\right)$. Consider $\operatorname{deg}\left(L_{\mathbb{G}_{1}\left(P_{0}\right)}\right): \mathbb{Z}$.
We can arrange $\operatorname{deg}\left(L_{\mathbb{G}_{1}\left(P_{0}\right)}\right)=0$ by replacing L with some $L \otimes \mathcal{O}(d)$.

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Adjust L so that we can expect $\|L=\mathcal{O}(0)\|$.

Fix a standard plane $P_{0}: \mathbb{G}_{2}\left(R^{n+1}\right)$. Consider $\operatorname{deg}\left(L_{\mathbb{G}_{1}\left(P_{0}\right)}\right): \mathbb{Z}$.
We can arrange $\operatorname{deg}\left(L_{\mathbb{G}_{1}\left(P_{0}\right)}\right)=0$ by replacing L with some $L \otimes \mathcal{O}(d)$.

Fact: $\mathbb{G}_{2}\left(R^{n+1}\right)$ is indecomposable.

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Adjust L so that we can expect $\|L=\mathcal{O}(0)\|$.

Fix a standard plane $P_{0}: \mathbb{G}_{2}\left(R^{n+1}\right)$. Consider $\operatorname{deg}\left(L_{\mathbb{G}_{1}\left(P_{0}\right)}\right): \mathbb{Z}$.
We can arrange $\operatorname{deg}\left(L_{\mathbb{G}_{1}\left(P_{0}\right)}\right)=0$ by replacing L with some $L \otimes \mathcal{O}(d)$.

Fact: $\mathbb{G}_{2}\left(R^{n+1}\right)$ is indecomposable.
So $\operatorname{deg}\left(\left.L\right|_{\mathbb{G}_{1}(P)}\right)=0$ for every plane $P: \mathbb{G}_{2}\left(R^{n+1}\right)$.

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Adjust L so that we can expect $\|L=\mathcal{O}(0)\|$.

Fix a standard plane $P_{0}: \mathbb{G}_{2}\left(R^{n+1}\right)$. Consider $\operatorname{deg}\left(L_{\mathbb{G}_{1}\left(P_{0}\right)}\right): \mathbb{Z}$.
We can arrange $\operatorname{deg}\left(L_{\mathbb{G}_{1}\left(P_{0}\right)}\right)=0$ by replacing L with some $L \otimes \mathcal{O}(d)$.

Fact: $\mathbb{G}_{2}\left(R^{n+1}\right)$ is indecomposable.
So $\operatorname{deg}\left(\left.L\right|_{\mathbb{G}_{1}(P)}\right)=0$ for every plane $P: \mathbb{G}_{2}\left(R^{n+1}\right)$.
Thus: $L(p)=L\left(p^{\prime}\right)$ for all p, p^{\prime} on $\mathbb{G}_{1}(P)$.
$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Use interpolation.

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Use interpolation.

For $p \neq p^{\prime}$ in \mathbb{P}^{n} we have $\operatorname{deg}\left(\left.L\right|_{\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)}\right)=0$, so:
$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$
Use interpolation.

For $p \neq p^{\prime}$ in \mathbb{P}^{n} we have $\operatorname{deg}\left(L_{\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)}\right)=0$, so:

$$
p \neq p^{\prime} \quad \rightarrow \quad L(p)=L\left(p^{\prime}\right)
$$

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Use interpolation.

For $p \neq p^{\prime}$ in \mathbb{P}^{n} we have $\operatorname{deg}\left(\left.L\right|_{\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)}\right)=0$, so:

$$
p \neq p^{\prime} \quad \rightarrow \quad L(p)=L\left(p^{\prime}\right)
$$

Fix standard points $p_{0}, p_{1}: \mathbb{P}^{n}$.
$L=$ const $L\left(p_{0}\right)$ on $\mathbb{P}^{n} \backslash\left\{p_{0}\right\}$
$L=$ const $L\left(p_{1}\right)$ on $\mathbb{P}^{n} \backslash\left\{p_{1}\right\}$

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Use interpolation.

For $p \neq p^{\prime}$ in \mathbb{P}^{n} we have $\operatorname{deg}\left(\left.L\right|_{\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)}\right)=0$, so:

$$
p \neq p^{\prime} \quad \rightarrow \quad L(p)=L\left(p^{\prime}\right)
$$

Fix standard points $p_{0}, p_{1}: \mathbb{P}^{n}$ and paths $L\left(p_{0}\right)=R^{1}, L\left(p_{1}\right)=R^{1}$.
$L=$ const $L\left(p_{0}\right)$ on $\mathbb{P}^{n} \backslash\left\{p_{0}\right\}$
$L=$ const $L\left(p_{1}\right)$ on $\mathbb{P}^{n} \backslash\left\{p_{1}\right\}$

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Use interpolation.

For $p \neq p^{\prime}$ in \mathbb{P}^{n} we have $\operatorname{deg}\left(\left.L\right|_{\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)}\right)=0$, so:

$$
p \neq p^{\prime} \quad \rightarrow \quad L(p)=L\left(p^{\prime}\right)
$$

Fix standard points $p_{0}, p_{1}: \mathbb{P}^{n}$ and paths $L\left(p_{0}\right)=R^{1}, L\left(p_{1}\right)=R^{1}$.
$L=$ const R^{1} on $\mathbb{P}^{n} \backslash\left\{p_{0}\right\}$
$L=$ const R^{1} on $\mathbb{P}^{n} \backslash\left\{p_{1}\right\}$

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Use interpolation.

For $p \neq p^{\prime}$ in \mathbb{P}^{n} we have $\operatorname{deg}\left(\left.L\right|_{\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)}\right)=0$, so:

$$
p \neq p^{\prime} \quad \rightarrow \quad L(p)=L\left(p^{\prime}\right)
$$

Fix standard points $p_{0}, p_{1}: \mathbb{P}^{n}$ and paths $L\left(p_{0}\right)=R^{1}, L\left(p_{1}\right)=R^{1}$.
$L=$ const R^{1} on $\mathbb{P}^{n} \backslash\left\{p_{0}\right\}$
$L=$ const R^{1} on $\mathbb{P}^{n} \backslash\left\{p_{1}\right\}$
For $p: \mathbb{P}^{n} \backslash\left\{p_{0}, p_{1}\right\}$ we have two identifications:

$$
R^{1}=L(p)=R^{1}
$$

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Use interpolation.

For $p \neq p^{\prime}$ in \mathbb{P}^{n} we have $\operatorname{deg}\left(\left.L\right|_{\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)}\right)=0$, so:

$$
p \neq p^{\prime} \quad \rightarrow \quad L(p)=L\left(p^{\prime}\right)
$$

Fix standard points $p_{0}, p_{1}: \mathbb{P}^{n}$ and paths $L\left(p_{0}\right)=R^{1}, L\left(p_{1}\right)=R^{1}$.
$L=$ const R^{1} on $\mathbb{P}^{n} \backslash\left\{p_{0}\right\}$
$L=$ const R^{1} on $\mathbb{P}^{n} \backslash\left\{p_{1}\right\}$
For $p: \mathbb{P}^{n} \backslash\left\{p_{0}, p_{1}\right\}$ we have two identifications:

$$
R^{1}=L(p)=R^{1}
$$

Fact: Every function $\mathbb{P}^{n} \backslash\left\{p_{0}, p_{1}\right\} \rightarrow R^{\times}$is constant.

$\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$

- Use interpolation.

For $p \neq p^{\prime}$ in \mathbb{P}^{n} we have $\operatorname{deg}\left(\left.L\right|_{\mathbb{G}_{1}\left(\left\langle p, p^{\prime}\right\rangle\right)}\right)=0$, so:

$$
p \neq p^{\prime} \quad \rightarrow \quad L(p)=L\left(p^{\prime}\right)
$$

Fix standard points $p_{0}, p_{1}: \mathbb{P}^{n}$ and paths $L\left(p_{0}\right)=R^{1}, L\left(p_{1}\right)=R^{1}$.
$L=$ const R^{1} on $\mathbb{P}^{n} \backslash\left\{p_{0}\right\}$
$L=$ const R^{1} on $\mathbb{P}^{n} \backslash\left\{p_{1}\right\}$
For $p: \mathbb{P}^{\boldsymbol{n}} \backslash\left\{p_{0}, p_{1}\right\}$ we have two identifications:

$$
R^{1}=L(p)=R^{1}
$$

Fact: Every function $\mathbb{P}^{n} \backslash\left\{p_{0}, p_{1}\right\} \rightarrow R^{\times}$is constant.
So we conclude: $L=\mathcal{O}(0)$.

Application: $\operatorname{Aut}\left(\mathbb{P}^{n}\right)$

Recall: Every function $R^{m} \rightarrow R^{n}$ is given by n polynomials in m variables.

Application: $\operatorname{Aut}\left(\mathbb{P}^{n}\right)$

Recall: Every function $R^{m} \rightarrow R^{n}$ is given by n polynomials in m variables.

Theorem
Every function $f: \mathbb{P}^{m} \rightarrow \mathbb{P}^{n}$ is given by $n+1$ homogeneous polynomials of some degree d in $m+1$ variables.

Application: $\operatorname{Aut}\left(\mathbb{P}^{n}\right)$

Recall: Every function $R^{m} \rightarrow R^{n}$ is given by n polynomials in m variables.

Theorem
Every function $f: \mathbb{P}^{m} \rightarrow \mathbb{P}^{n}$ is given by $n+1$ homogeneous polynomials of some degree d in $m+1$ variables.

Core step: $d:=\operatorname{deg}(\mathcal{O}(1) \circ f)$

Application: $\operatorname{Aut}\left(\mathbb{P}^{n}\right)$

Recall: Every function $R^{m} \rightarrow R^{n}$ is given by n polynomials in m variables.

Theorem
Every function $f: \mathbb{P}^{m} \rightarrow \mathbb{P}^{n}$ is given by $n+1$ homogeneous polynomials of some degree d in $m+1$ variables.

Core step: $d:=\operatorname{deg}(\mathcal{O}(1) \circ f)$

Corollary

Every automorphism $\mathbb{P}^{n} \xrightarrow{\sim} \mathbb{P}^{n}$ is given by an invertible matrix, unique up to scalar multiplication.

$$
\operatorname{Aut}\left(\mathbb{P}^{n}\right) \cong \operatorname{PGL}_{n+1}(R)
$$

