Projective Space and Line Bundles in
Synthetic Algebraic Geometry

Matthias Hutzler
j-w.w. Felix Cherubini, Thierry Coquand, David Warn

HoTT/UF 2024
Leuven / online

Slides and video recording
licensed under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/

In this talk:
» SAG at a glance
P projective space P
» line bundles, Pic(X)
> classification of line bundles on P”
» application to Aut(P")

All results are well-known in (external) algebraic geometry,
but we present new, synthetic proofs using higher types.

Synthetic algebraic geometry

k-Schy, < Zary = Sh(k-Alg; , P, Jzar)

Synthetic algebraic geometry
k-Schy, < Zaryg = Sh(k-Alg; , P, Jzar)

We interpret HoTT internally in Zarg(oo’l) and write R for the

structure sheaf:

k-Algs ,, — Set
A=A

Synthetic algebraic geometry
k-Schy, < Zaryg = Sh(k-Alg; , P, Jzar)

We interpret HoTT internally in Zarg(oo’l) and write R for the

structure sheaf:

k-Algs ,, — Set

A= A
» Ris aring.
& _ _ » Every function f : R > R is
» Every x: R with x #0 is a polynomial
invertible. '
invertible ’ » But we can't determine
» But we don't have deg(f) : N

» Every function R™ — R" is
given by n polynomials in m
variables.

» Every x : R" with x # 0
generates a sub-module
(x) C R" with (x) = R!.

Some examples of schemes

affine space A" .= R"

Some examples of schemes

affine space A" .= R"
multiplicative group G, = R* =R\ {0}

Some examples of schemes

affine space A" .= R"
multiplicative group G, = R* = R\ {0}
projective space P" := Z L= RY
L C R™*1 sub-module

Some examples of schemes

affine space A" .= R"
multiplicative group G, = R* = R\ {0}
projective space P" := Z |IL = RY||
L C R™! sub-module

Grassmannian G,(R") = Z |P = RK||
P C R" sub-module

Some examples of schemes

affine space A" := R"
multiplicative group G, = R* = R\ {0}

projective space P" := Z |IL = RY||
L C R™! sub-module
— Gl(RnJrl)
Grassmannian G,(R") = Z |P = RK||

P C R" sub-module

Interpolating between two points in P”

Let p, p’' : P" with p # p'.

Consider the sub-module (p, p’) C R™1.

Interpolating between two points in P”

Let p, p’' : P" with p # p'.

Consider the sub-module (p, p’) C R™1.
Fact: |[(p, p) = R?||

Interpolating between two points in P”

Let p, p’' : P" with p # p'.

Consider the sub-module (p, p’) C R™1.
Fact: |[(p, p) = R?||

So we have
Gi((p,p")) CP"

with
IG1({p, p)) = P*|.

Interpolating between two points in P”

Let p, p’ : P" with p # p'.

Consider the sub-module (p, p’) C R™1.
Fact: |[(p, p) = R?||

So we have
Gi((p,p)) C P"
with
IG1({p, p)) = P*|.

We say: G1({(p, p’)) is the “line” interpolating between p and p’.

All functions P” — R are constant

Proposition
All functions P" — R are constant.

All functions P” — R are constant

Proposition
All functions P" — R are constant.

Case n = 1: Omitted.

All functions P” — R are constant

Proposition
All functions P" — R are constant.

Case n = 1: Omitted.

Case n > 2:

All functions P” — R are constant

Proposition
All functions P" — R are constant.

Case n = 1: Omitted.

Case n > 2:

Let f : P" — R be given.

All functions P” — R are constant

Proposition
All functions P" — R are constant.

Case n = 1: Omitted.

Case n > 2:

Let f : P" — R be given.
For p,p’ : P" with p # p’ we have ||G1({p, p')) = P!||.

All functions P” — R are constant

Proposition
All functions P" — R are constant.

Case n = 1: Omitted.

Case n > 2:

Let f : P" — R be given.
For p,p’ : P" with p # p’ we have ||G1({p, p')) = P!||.
So flg,((p,py) Must be constant (by case n = 1).

All functions P” — R are constant

Proposition
All functions P" — R are constant.

Case n = 1: Omitted.

Case n > 2:

Let f : P" — R be given.

For p,p’ : P" with p # p’ we have ||G1({p, p')) = P!||.
So flg,((p,py) Must be constant (by case n = 1).

In particular: p # p' — f(p) = f(p')

All functions P” — R are constant

Proposition

All functions P" — R are constant.

Case n = 1: Omitted.

Case n > 2:

Let f : P" — R be given.

For p,p’ : P" with p # p’ we have ||G1({p, p')) = P!||.
So flg,((p,py) Must be constant (by case n = 1).

In particular: p # p' — f(p) = f(p')

Fix po # p1. Then:

pP#p vV pFp
f(p) =f(po) Vv f(p)="f(p1)=f(po)

Recap of linear algebra (tensor product)

The following is true for any ring R.

— ® — : R-Mod x R-Mod — R-Mod

Recap of linear algebra (tensor product)

The following is true for any ring R.

— ® — : R-Mod x R-Mod — R-Mod

RreM=M
R'® R' = R!

Recap of linear algebra (tensor product)

The following is true for any ring R.

— ® — : R-Mod x R-Mod — R-Mod

RreM=M
R'® R' = R!
The dual module of M is

M"Y = Hom(M, R?).

Recap of linear algebra (tensor product)

The following is true for any ring R.

— ® — : R-Mod x R-Mod — R-Mod

RreM=M
R'® R' = R!
The dual module of M is

M"Y = Hom(M, R?).

Recap of linear algebra (tensor product)

The following is true for any ring R.

— ® — : R-Mod x R-Mod — R-Mod

RreM=M
R'® R' = R!
The dual module of M is

M"Y = Hom(M, R?).

Mo MY — R

~

Rl e RYY = RY

The type of abstract lines

Yo IL=RY

L:R-Mod

The type of abstract lines

> IL=rY

L:R-Mod

Is pointed (by R'), connected, has loop space Aut(R!) = R*.

The type of abstract lines

BR* = Y [L=R
L:R-Mod

Is pointed (by R'), connected, has loop space Aut(R!) = R*.

The type of abstract lines

BR* = Y [L=R
L:R-Mod

Is pointed (by R'), connected, has loop space Aut(R!) = R*.
We have operations
- ® —: BR* x BR* — BR*

—V: BR* — BR*

The type of abstract lines

BR* = 3 |L=RY
L:R-Mod

Is pointed (by R'), connected, has loop space Aut(R!) = R*.
We have operations
—® —: BR* x BR* — BR*
—V': BR* - BR*

with:
Rlol=L

Lo LY =R!

Line bundles

Definition
A line bundle on X is a map X — BR*.

Line bundles

Definition
A line bundle on X is a map X — BR*.

We always have the trivial line bundle X — BR*, x — R™.

Line bundles

Definition
A line bundle on X is a map X — BR*.

We always have the trivial line bundle X — BR*, x — R™.
We have pointwise operations — ® — and — on X — BRX*.

Line bundles

Definition
A line bundle on X is a map X — BR*.

We always have the trivial line bundle X — BR*, x — R™.
We have pointwise operations — ® — and — on X — BRX*.

Definition
The Picard group of X is

Pic(X) = || X = BR™||set-

Line bundles on P"

Recall: P" = > L= RY

L C R™! sub-module
The tautological line bundle on P" is:

O(-1) : P" — BR*
L— L

Line bundles on P"

Recall: P" = > L= RY

L C R™! sub-module
The tautological line bundle on P" is:

O(-1) : P" — BR*
L— L

Define O(d) := O(—=1)®" for every d : Z.

Line bundles on P"

Recall: P" = > L= RY

L C R™! sub-module
The tautological line bundle on P" is:

O(-1) : P" — BR*
L— L

Define O(d) := O(—=1)®" for every d : Z.

Fact: O(—) : Z — Pic(P") is injective.

Line bundles on P"

Recall: P" = > L= RY

L C R™! sub-module
The tautological line bundle on P" is:

O(-1) : P" — BR*
L— L

Define O(d) := O(—=1)®" for every d : Z.
Fact: O(—) : Z — Pic(P") is injective.

Q: Are there other line bundles on P"?

Pic(P") = Z

Theorem
For every line bundle L : P" — BR* there is a number d : 7, such
that ||L = O(d)||. Thus:

O(-) : Z = Pic(P").

Pic(P") = Z

Theorem
For every line bundle L : P" — BR* there is a number d : 7, such

that ||L = O(d)||. Thus:
O(-) : Z = Pic(P").

Notation: deg(L) :=d

Pic(P") = Z

Theorem
For every line bundle L : P" — BR* there is a number d : 7, such
that ||L = O(d)||. Thus:
O(-) : Z = Pic(P").
Notation: deg(L) :=d

Case n = 1: Needs non-trivial algebra (Horrocks' theorem).

Pic(P") = Z

Theorem
For every line bundle L : P" — BR* there is a number d : 7, such
that ||L = O(d)||. Thus:

O(-) : Z = Pic(P").
Notation: deg(L) :=d

Case n = 1: Needs non-trivial algebra (Horrocks' theorem).

Plan for n > 2:
» Strengthen the n = 1 case to a non-truncated statement.
» Adjust L so that we can expect ||L = O(0)]].

» Use interpolation.

Pic(P") = Z

» Strengthen the n = 1 case to a non-truncated statement.

Pic(P") = Z

» Strengthen the n = 1 case to a non-truncated statement.

Z = |IPY = BR®|set
d — |O(d)]

Pic(P") = Z

» Strengthen the n = 1 case to a non-truncated statement.

Z = |IPY = BR®|set
d — |O(d)]

Fact: Any line bundle L : P! — BR* has the same automorphism
group (L= L) = R*.

Pic(P") = Z
» Strengthen the n = 1 case to a non-truncated statement.

Z = |IPY = BR®|set
d — |O(d)]

Fact: Any line bundle L : P! — BR* has the same automorphism
group (L= L) = R*.

~

Zx BR* = (P! — BRX)
(d,L) — L®O(d)

Pic(P") = Z

» Strengthen the n = 1 case to a non-truncated statement.

Z = |IPY = BR®|set
d — |O(d)]

Fact: Any line bundle L : P! — BR* has the same automorphism
group (L= L) = R*.

~

Zx BR* = (P! — BRX)
(d,L) — L®O(d)

Corollary: If deg(L) = 0 then we have [], , p1 L(p) = L(p").

Pic(P") = Z

» Adjust L so that we can expect ||L = O(0)]|.

Pic(P") = Z

» Adjust L so that we can expect ||L = O(0)]|.

Fix a standard plane Py : G2(R""!). Consider deg(L|g,(py)) : Z-

Pic(P") = Z

» Adjust L so that we can expect ||L = O(0)]|.

Fix a standard plane Py : G2(R""!). Consider deg(L|g,(py)) : Z-

We can arrange deg(L|g,(p,)) = 0 by replacing L with some
L ® O(d).

Pic(P") = Z

» Adjust L so that we can expect ||L = O(0)]|.

Fix a standard plane Py : G2(R""!). Consider deg(L|g,(py)) : Z-

We can arrange deg(L|g,(p,)) = 0 by replacing L with some
L ® O(d).

Fact: Gy(R™1) is indecomposable.

Pic(P") = Z

» Adjust L so that we can expect ||L = O(0)]|.

Fix a standard plane Py : G2(R""!). Consider deg(L|g,(py)) : Z-

We can arrange deg(L|g,(p,)) = 0 by replacing L with some
L ® O(d).

Fact: Gy(R™1) is indecomposable.

So deg(L|g,(p)) = O for every plane P : Go(R™1).

Pic(P") = Z

» Adjust L so that we can expect ||L = O(0)]|.

Fix a standard plane Py : G2(R""!). Consider deg(L|g,(py)) : Z-

We can arrange deg(L|g,(p,)) = 0 by replacing L with some
L ® O(d).

Fact: Gy(R™1) is indecomposable.
So deg(L|g,(p)) = O for every plane P : Go(R™1).

Thus: L(p) = L(p') for all p,p’ on G1(P).

Pic(P") = Z

» Use interpolation.

Pic(P") = Z

» Use interpolation.

For p # p' in P" we have deg(L|g,((p,pr}))) = 0, so:

Pic(P") = Z

» Use interpolation.

For p # p' in P" we have deg(L|g,((p,pr}))) = 0, so:

p#p — Lip)=L(p)

Pic(P") = Z

» Use interpolation.

For p # p' in P" we have deg(L|g,((p,pr}))) = 0, so:

p#p — Lp)=L(p)

Fix standard points pg, p1 : P".

L = const L(pg) on P"\ {po}
L =constL(p1) onP"\{p1}

Pic(P") = Z

» Use interpolation.

For p # p' in P" we have deg(L|g,((p,pr}))) = 0, so:

p#p — Lip)=L(p)

Fix standard points pg, p1 : P and paths L(po) = R, L(p1) = RL.

L = const L(pg) on P"\ {po}
L =constL(p1) onP"\{p1}

Pic(P") = Z

» Use interpolation.

For p # p' in P" we have deg(L|g,((p,pr}))) = 0, so:

p#p — Lip)=L(p)

Fix standard points pg, p1 : P and paths L(po) = R, L(p1) = RL.

L =constRY onP"\ {po}
L =constR? onP"\ {p1}

Pic(P") = Z

» Use interpolation.

For p # p' in P" we have deg(L|g,((p,pr}))) = 0, so:

p#p — Lip)=L(p)

Fix standard points pg, p1 : P and paths L(po) = R, L(p1) = RL.

L =constRY onP"\ {po}
L =constR? onP"\ {p1}

For p: P"\ {po, p1} we have two identifications:

R'=L(p) =R

Pic(P") = Z

» Use interpolation.

For p # p' in P" we have deg(L|g,((p,pr}))) = 0, so:

p#p — Lp)=L(p)

Fix standard points pg, p1 : P and paths L(po) = R, L(p1) = RL.

L =constRY onP"\ {po}
L =constR? onP"\ {p1}

For p: P"\ {po, p1} we have two identifications:
RY = L(p) = R*

Fact: Every function P\ {po, p1} — R* is constant.

Pic(P") = Z

» Use interpolation.

For p # p' in P" we have deg(L|g,((p,pr}))) = 0, so:

p#p — Lp)=L(p)

Fix standard points pg, p1 : P and paths L(po) = R, L(p1) = RL.

L =constRY onP"\ {po}
L =constR? onP"\ {p1}

For p: P"\ {po, p1} we have two identifications:
R' = L(p) =R
Fact: Every function P\ {po, p1} — R* is constant.

So we conclude: L = O(0).

Application: Aut(P")

Recall: Every function R™ — R" is given by n polynomials in m
variables.

Application: Aut(P")

Recall: Every function R™ — R" is given by n polynomials in m
variables.

Theorem
Every function f : P™ — P" js given by n + 1 homogeneous
polynomials of some degree d in m + 1 variables.

Application: Aut(P")

Recall: Every function R™ — R" is given by n polynomials in m
variables.

Theorem
Every function f : P™ — P" js given by n + 1 homogeneous
polynomials of some degree d in m + 1 variables.

Core step: d = deg(O(1) o f)

Application: Aut(P")

Recall: Every function R™ — R" is given by n polynomials in m
variables.

Theorem
Every function f : P™ — P" js given by n + 1 homogeneous
polynomials of some degree d in m + 1 variables.

Core step: d = deg(O(1) o f)

Corollary

Every automorphism P" = P" is given by an invertible matrix,
unique up to scalar multiplication.

Aut(P") = PGL,1(R)

