
Projective Space and Line Bundles in
Synthetic Algebraic Geometry

Matthias Hutzler
j.w.w. Felix Cherubini, Thierry Coquand, David Wärn

HoTT/UF 2024
Leuven / online

Slides and video recording
licensed under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/

In this talk:

▶ SAG at a glance

▶ projective space Pn

▶ line bundles, Pic(X)

▶ classification of line bundles on Pn

▶ application to Aut(Pn)

All results are well-known in (external) algebraic geometry,
but we present new, synthetic proofs using higher types.

Synthetic algebraic geometry

k-Schf.p. ↪→ Zark := Sh(k-Algf.p.
op, JZar)

We interpret HoTT internally in Zar
(∞,1)
k and write R for the

structure sheaf:

k-Algf.p. → Set

A 7→ A

▶ R is a ring.
▶ Every x : R with x ̸= 0 is

invertible.
▶ But we don’t have

x = 0 ∨ x ̸= 0.

▶ Every x : Rn with x ̸= 0
generates a sub-module
⟨x⟩ ⊆ Rn with ⟨x⟩ ∼= R1.

▶ Every function f : R → R is
a polynomial.
▶ But we can’t determine

deg(f) : N.
▶ Every function Rm → Rn is

given by n polynomials in m
variables.

Synthetic algebraic geometry

k-Schf.p. ↪→ Zark := Sh(k-Algf.p.
op, JZar)

We interpret HoTT internally in Zar
(∞,1)
k and write R for the

structure sheaf:

k-Algf.p. → Set

A 7→ A

▶ R is a ring.
▶ Every x : R with x ̸= 0 is

invertible.
▶ But we don’t have

x = 0 ∨ x ̸= 0.

▶ Every x : Rn with x ̸= 0
generates a sub-module
⟨x⟩ ⊆ Rn with ⟨x⟩ ∼= R1.

▶ Every function f : R → R is
a polynomial.
▶ But we can’t determine

deg(f) : N.
▶ Every function Rm → Rn is

given by n polynomials in m
variables.

Synthetic algebraic geometry

k-Schf.p. ↪→ Zark := Sh(k-Algf.p.
op, JZar)

We interpret HoTT internally in Zar
(∞,1)
k and write R for the

structure sheaf:

k-Algf.p. → Set

A 7→ A

▶ R is a ring.
▶ Every x : R with x ̸= 0 is

invertible.
▶ But we don’t have

x = 0 ∨ x ̸= 0.

▶ Every x : Rn with x ̸= 0
generates a sub-module
⟨x⟩ ⊆ Rn with ⟨x⟩ ∼= R1.

▶ Every function f : R → R is
a polynomial.
▶ But we can’t determine

deg(f) : N.
▶ Every function Rm → Rn is

given by n polynomials in m
variables.

Some examples of schemes

affine space An := Rn

multiplicative group Gm := R× = R \ {0}
projective space Pn :=

∑
L ⊆ Rn+1 sub-module

∥L ∼= R1∥

= G1(R
n+1)

Grassmannian Gk(R
n) :=

∑
P ⊆ Rn sub-module

∥P ∼= Rk∥

Some examples of schemes

affine space An := Rn

multiplicative group Gm := R× = R \ {0}

projective space Pn :=
∑

L ⊆ Rn+1 sub-module

∥L ∼= R1∥

= G1(R
n+1)

Grassmannian Gk(R
n) :=

∑
P ⊆ Rn sub-module

∥P ∼= Rk∥

Some examples of schemes

affine space An := Rn

multiplicative group Gm := R× = R \ {0}
projective space Pn :=

∑
L ⊆ Rn+1 sub-module

∥L ∼= R1∥

= G1(R
n+1)

Grassmannian Gk(R
n) :=

∑
P ⊆ Rn sub-module

∥P ∼= Rk∥

Some examples of schemes

affine space An := Rn

multiplicative group Gm := R× = R \ {0}
projective space Pn :=

∑
L ⊆ Rn+1 sub-module

∥L ∼= R1∥

= G1(R
n+1)

Grassmannian Gk(R
n) :=

∑
P ⊆ Rn sub-module

∥P ∼= Rk∥

Some examples of schemes

affine space An := Rn

multiplicative group Gm := R× = R \ {0}
projective space Pn :=

∑
L ⊆ Rn+1 sub-module

∥L ∼= R1∥

= G1(R
n+1)

Grassmannian Gk(R
n) :=

∑
P ⊆ Rn sub-module

∥P ∼= Rk∥

Interpolating between two points in Pn

Let p, p′ : Pn with p ̸= p′.

Consider the sub-module ⟨p, p′⟩ ⊆ Rn+1.

Fact: ∥⟨p, p′⟩ ∼= R2∥

So we have
G1(⟨p, p′⟩) ⊆ Pn

with
∥G1(⟨p, p′⟩) = P1∥.

We say: G1(⟨p, p′⟩) is the “line” interpolating between p and p′.

Interpolating between two points in Pn

Let p, p′ : Pn with p ̸= p′.

Consider the sub-module ⟨p, p′⟩ ⊆ Rn+1.
Fact: ∥⟨p, p′⟩ ∼= R2∥

So we have
G1(⟨p, p′⟩) ⊆ Pn

with
∥G1(⟨p, p′⟩) = P1∥.

We say: G1(⟨p, p′⟩) is the “line” interpolating between p and p′.

Interpolating between two points in Pn

Let p, p′ : Pn with p ̸= p′.

Consider the sub-module ⟨p, p′⟩ ⊆ Rn+1.
Fact: ∥⟨p, p′⟩ ∼= R2∥

So we have
G1(⟨p, p′⟩) ⊆ Pn

with
∥G1(⟨p, p′⟩) = P1∥.

We say: G1(⟨p, p′⟩) is the “line” interpolating between p and p′.

Interpolating between two points in Pn

Let p, p′ : Pn with p ̸= p′.

Consider the sub-module ⟨p, p′⟩ ⊆ Rn+1.
Fact: ∥⟨p, p′⟩ ∼= R2∥

So we have
G1(⟨p, p′⟩) ⊆ Pn

with
∥G1(⟨p, p′⟩) = P1∥.

We say: G1(⟨p, p′⟩) is the “line” interpolating between p and p′.

All functions Pn → R are constant

Proposition

All functions Pn → R are constant.

Case n = 1: Omitted.

Case n ≥ 2:

Let f : Pn → R be given.
For p, p′ : Pn with p ̸= p′ we have ∥G1(⟨p, p′⟩) = P1∥.
So f |G1(⟨p,p′⟩) must be constant (by case n = 1).
In particular: p ̸= p′ → f (p) = f (p′)

Fix p0 ̸= p1. Then:

p ̸= p0 ∨ p ̸= p1

f (p) = f (p0) ∨ f (p) = f (p1) = f (p0)

All functions Pn → R are constant

Proposition

All functions Pn → R are constant.

Case n = 1: Omitted.

Case n ≥ 2:

Let f : Pn → R be given.
For p, p′ : Pn with p ̸= p′ we have ∥G1(⟨p, p′⟩) = P1∥.
So f |G1(⟨p,p′⟩) must be constant (by case n = 1).
In particular: p ̸= p′ → f (p) = f (p′)

Fix p0 ̸= p1. Then:

p ̸= p0 ∨ p ̸= p1

f (p) = f (p0) ∨ f (p) = f (p1) = f (p0)

All functions Pn → R are constant

Proposition

All functions Pn → R are constant.

Case n = 1: Omitted.

Case n ≥ 2:

Let f : Pn → R be given.
For p, p′ : Pn with p ̸= p′ we have ∥G1(⟨p, p′⟩) = P1∥.
So f |G1(⟨p,p′⟩) must be constant (by case n = 1).
In particular: p ̸= p′ → f (p) = f (p′)

Fix p0 ̸= p1. Then:

p ̸= p0 ∨ p ̸= p1

f (p) = f (p0) ∨ f (p) = f (p1) = f (p0)

All functions Pn → R are constant

Proposition

All functions Pn → R are constant.

Case n = 1: Omitted.

Case n ≥ 2:

Let f : Pn → R be given.

For p, p′ : Pn with p ̸= p′ we have ∥G1(⟨p, p′⟩) = P1∥.
So f |G1(⟨p,p′⟩) must be constant (by case n = 1).
In particular: p ̸= p′ → f (p) = f (p′)

Fix p0 ̸= p1. Then:

p ̸= p0 ∨ p ̸= p1

f (p) = f (p0) ∨ f (p) = f (p1) = f (p0)

All functions Pn → R are constant

Proposition

All functions Pn → R are constant.

Case n = 1: Omitted.

Case n ≥ 2:

Let f : Pn → R be given.
For p, p′ : Pn with p ̸= p′ we have ∥G1(⟨p, p′⟩) = P1∥.

So f |G1(⟨p,p′⟩) must be constant (by case n = 1).
In particular: p ̸= p′ → f (p) = f (p′)

Fix p0 ̸= p1. Then:

p ̸= p0 ∨ p ̸= p1

f (p) = f (p0) ∨ f (p) = f (p1) = f (p0)

All functions Pn → R are constant

Proposition

All functions Pn → R are constant.

Case n = 1: Omitted.

Case n ≥ 2:

Let f : Pn → R be given.
For p, p′ : Pn with p ̸= p′ we have ∥G1(⟨p, p′⟩) = P1∥.
So f |G1(⟨p,p′⟩) must be constant (by case n = 1).

In particular: p ̸= p′ → f (p) = f (p′)

Fix p0 ̸= p1. Then:

p ̸= p0 ∨ p ̸= p1

f (p) = f (p0) ∨ f (p) = f (p1) = f (p0)

All functions Pn → R are constant

Proposition

All functions Pn → R are constant.

Case n = 1: Omitted.

Case n ≥ 2:

Let f : Pn → R be given.
For p, p′ : Pn with p ̸= p′ we have ∥G1(⟨p, p′⟩) = P1∥.
So f |G1(⟨p,p′⟩) must be constant (by case n = 1).
In particular: p ̸= p′ → f (p) = f (p′)

Fix p0 ̸= p1. Then:

p ̸= p0 ∨ p ̸= p1

f (p) = f (p0) ∨ f (p) = f (p1) = f (p0)

All functions Pn → R are constant

Proposition

All functions Pn → R are constant.

Case n = 1: Omitted.

Case n ≥ 2:

Let f : Pn → R be given.
For p, p′ : Pn with p ̸= p′ we have ∥G1(⟨p, p′⟩) = P1∥.
So f |G1(⟨p,p′⟩) must be constant (by case n = 1).
In particular: p ̸= p′ → f (p) = f (p′)

Fix p0 ̸= p1. Then:

p ̸= p0 ∨ p ̸= p1

f (p) = f (p0) ∨ f (p) = f (p1) = f (p0)

Recap of linear algebra (tensor product)

The following is true for any ring R.

−⊗− : R-Mod× R-Mod → R-Mod

R1 ⊗M ∼= M

R1 ⊗ R1 ∼= R1

The dual module of M is

M∨ := Hom(M,R1).

R1∨ ∼= R1

M ⊗M∨ → R1

R1 ⊗ R1∨ ∼−→ R1

Recap of linear algebra (tensor product)

The following is true for any ring R.

−⊗− : R-Mod× R-Mod → R-Mod

R1 ⊗M ∼= M

R1 ⊗ R1 ∼= R1

The dual module of M is

M∨ := Hom(M,R1).

R1∨ ∼= R1

M ⊗M∨ → R1

R1 ⊗ R1∨ ∼−→ R1

Recap of linear algebra (tensor product)

The following is true for any ring R.

−⊗− : R-Mod× R-Mod → R-Mod

R1 ⊗M ∼= M

R1 ⊗ R1 ∼= R1

The dual module of M is

M∨ := Hom(M,R1).

R1∨ ∼= R1

M ⊗M∨ → R1

R1 ⊗ R1∨ ∼−→ R1

Recap of linear algebra (tensor product)

The following is true for any ring R.

−⊗− : R-Mod× R-Mod → R-Mod

R1 ⊗M ∼= M

R1 ⊗ R1 ∼= R1

The dual module of M is

M∨ := Hom(M,R1).

R1∨ ∼= R1

M ⊗M∨ → R1

R1 ⊗ R1∨ ∼−→ R1

Recap of linear algebra (tensor product)

The following is true for any ring R.

−⊗− : R-Mod× R-Mod → R-Mod

R1 ⊗M ∼= M

R1 ⊗ R1 ∼= R1

The dual module of M is

M∨ := Hom(M,R1).

R1∨ ∼= R1

M ⊗M∨ → R1

R1 ⊗ R1∨ ∼−→ R1

The type of abstract lines

BR× :=

∑
L:R-Mod

∥L ∼= R1∥

Is pointed (by R1), connected, has loop space Aut(R1) ∼= R×.

We have operations

−⊗− : BR× × BR× → BR×

−∨ : BR× → BR×

with:
R1 ⊗ L = L

L⊗ L∨ = R1

The type of abstract lines

BR× :=

∑
L:R-Mod

∥L ∼= R1∥

Is pointed (by R1), connected, has loop space Aut(R1) ∼= R×.

We have operations

−⊗− : BR× × BR× → BR×

−∨ : BR× → BR×

with:
R1 ⊗ L = L

L⊗ L∨ = R1

The type of abstract lines

BR× :=
∑

L:R-Mod

∥L ∼= R1∥

Is pointed (by R1), connected, has loop space Aut(R1) ∼= R×.

We have operations

−⊗− : BR× × BR× → BR×

−∨ : BR× → BR×

with:
R1 ⊗ L = L

L⊗ L∨ = R1

The type of abstract lines

BR× :=
∑

L:R-Mod

∥L ∼= R1∥

Is pointed (by R1), connected, has loop space Aut(R1) ∼= R×.

We have operations

−⊗− : BR× × BR× → BR×

−∨ : BR× → BR×

with:
R1 ⊗ L = L

L⊗ L∨ = R1

The type of abstract lines

BR× :=
∑

L:R-Mod

∥L ∼= R1∥

Is pointed (by R1), connected, has loop space Aut(R1) ∼= R×.

We have operations

−⊗− : BR× × BR× → BR×

−∨ : BR× → BR×

with:
R1 ⊗ L = L

L⊗ L∨ = R1

Line bundles

Definition
A line bundle on X is a map X → BR×.

We always have the trivial line bundle X → BR×, x 7→ R1.
We have pointwise operations −⊗− and −∨ on X → BR×.

Definition
The Picard group of X is

Pic(X) := ∥X → BR×∥set.

Line bundles

Definition
A line bundle on X is a map X → BR×.

We always have the trivial line bundle X → BR×, x 7→ R1.

We have pointwise operations −⊗− and −∨ on X → BR×.

Definition
The Picard group of X is

Pic(X) := ∥X → BR×∥set.

Line bundles

Definition
A line bundle on X is a map X → BR×.

We always have the trivial line bundle X → BR×, x 7→ R1.
We have pointwise operations −⊗− and −∨ on X → BR×.

Definition
The Picard group of X is

Pic(X) := ∥X → BR×∥set.

Line bundles

Definition
A line bundle on X is a map X → BR×.

We always have the trivial line bundle X → BR×, x 7→ R1.
We have pointwise operations −⊗− and −∨ on X → BR×.

Definition
The Picard group of X is

Pic(X) := ∥X → BR×∥set.

Line bundles on Pn

Recall: Pn :=
∑

L ⊆ Rn+1 sub-module

∥L ∼= R1∥

The tautological line bundle on Pn is:

O(−1) : Pn → BR×

L 7→ L

Define O(d) := O(−1)⊗−d for every d : Z.

Fact: O(−) : Z → Pic(Pn) is injective.

Q: Are there other line bundles on Pn?

Line bundles on Pn

Recall: Pn :=
∑

L ⊆ Rn+1 sub-module

∥L ∼= R1∥

The tautological line bundle on Pn is:

O(−1) : Pn → BR×

L 7→ L

Define O(d) := O(−1)⊗−d for every d : Z.

Fact: O(−) : Z → Pic(Pn) is injective.

Q: Are there other line bundles on Pn?

Line bundles on Pn

Recall: Pn :=
∑

L ⊆ Rn+1 sub-module

∥L ∼= R1∥

The tautological line bundle on Pn is:

O(−1) : Pn → BR×

L 7→ L

Define O(d) := O(−1)⊗−d for every d : Z.

Fact: O(−) : Z → Pic(Pn) is injective.

Q: Are there other line bundles on Pn?

Line bundles on Pn

Recall: Pn :=
∑

L ⊆ Rn+1 sub-module

∥L ∼= R1∥

The tautological line bundle on Pn is:

O(−1) : Pn → BR×

L 7→ L

Define O(d) := O(−1)⊗−d for every d : Z.

Fact: O(−) : Z → Pic(Pn) is injective.

Q: Are there other line bundles on Pn?

Pic(Pn) = Z

Theorem
For every line bundle L : Pn → BR× there is a number d : Z such
that ∥L = O(d)∥. Thus:

O(−) : Z ∼−→ Pic(Pn).

Notation: deg(L) := d

Case n = 1: Needs non-trivial algebra (Horrocks’ theorem).

Plan for n ≥ 2:

▶ Strengthen the n = 1 case to a non-truncated statement.

▶ Adjust L so that we can expect ∥L = O(0)∥.
▶ Use interpolation.

Pic(Pn) = Z

Theorem
For every line bundle L : Pn → BR× there is a number d : Z such
that ∥L = O(d)∥. Thus:

O(−) : Z ∼−→ Pic(Pn).

Notation: deg(L) := d

Case n = 1: Needs non-trivial algebra (Horrocks’ theorem).

Plan for n ≥ 2:

▶ Strengthen the n = 1 case to a non-truncated statement.

▶ Adjust L so that we can expect ∥L = O(0)∥.
▶ Use interpolation.

Pic(Pn) = Z

Theorem
For every line bundle L : Pn → BR× there is a number d : Z such
that ∥L = O(d)∥. Thus:

O(−) : Z ∼−→ Pic(Pn).

Notation: deg(L) := d

Case n = 1: Needs non-trivial algebra (Horrocks’ theorem).

Plan for n ≥ 2:

▶ Strengthen the n = 1 case to a non-truncated statement.

▶ Adjust L so that we can expect ∥L = O(0)∥.
▶ Use interpolation.

Pic(Pn) = Z

Theorem
For every line bundle L : Pn → BR× there is a number d : Z such
that ∥L = O(d)∥. Thus:

O(−) : Z ∼−→ Pic(Pn).

Notation: deg(L) := d

Case n = 1: Needs non-trivial algebra (Horrocks’ theorem).

Plan for n ≥ 2:

▶ Strengthen the n = 1 case to a non-truncated statement.

▶ Adjust L so that we can expect ∥L = O(0)∥.
▶ Use interpolation.

Pic(Pn) = Z

▶ Strengthen the n = 1 case to a non-truncated statement.

Z ∼−→ ∥P1 → BR×∥set
d 7→ |O(d)|

Fact: Any line bundle L : P1 → BR× has the same automorphism
group (L = L) ∼= R×.

Z× BR× ∼−→ (P1 → BR×)

(d , L) 7→ L⊗O(d)

Corollary: If deg(L) = 0 then we have
∏

p,p′:P1 L(p) = L(p′).

Pic(Pn) = Z

▶ Strengthen the n = 1 case to a non-truncated statement.

Z ∼−→ ∥P1 → BR×∥set
d 7→ |O(d)|

Fact: Any line bundle L : P1 → BR× has the same automorphism
group (L = L) ∼= R×.

Z× BR× ∼−→ (P1 → BR×)

(d , L) 7→ L⊗O(d)

Corollary: If deg(L) = 0 then we have
∏

p,p′:P1 L(p) = L(p′).

Pic(Pn) = Z

▶ Strengthen the n = 1 case to a non-truncated statement.

Z ∼−→ ∥P1 → BR×∥set
d 7→ |O(d)|

Fact: Any line bundle L : P1 → BR× has the same automorphism
group (L = L) ∼= R×.

Z× BR× ∼−→ (P1 → BR×)

(d , L) 7→ L⊗O(d)

Corollary: If deg(L) = 0 then we have
∏

p,p′:P1 L(p) = L(p′).

Pic(Pn) = Z

▶ Strengthen the n = 1 case to a non-truncated statement.

Z ∼−→ ∥P1 → BR×∥set
d 7→ |O(d)|

Fact: Any line bundle L : P1 → BR× has the same automorphism
group (L = L) ∼= R×.

Z× BR× ∼−→ (P1 → BR×)

(d , L) 7→ L⊗O(d)

Corollary: If deg(L) = 0 then we have
∏

p,p′:P1 L(p) = L(p′).

Pic(Pn) = Z

▶ Strengthen the n = 1 case to a non-truncated statement.

Z ∼−→ ∥P1 → BR×∥set
d 7→ |O(d)|

Fact: Any line bundle L : P1 → BR× has the same automorphism
group (L = L) ∼= R×.

Z× BR× ∼−→ (P1 → BR×)

(d , L) 7→ L⊗O(d)

Corollary: If deg(L) = 0 then we have
∏

p,p′:P1 L(p) = L(p′).

Pic(Pn) = Z

▶ Adjust L so that we can expect ∥L = O(0)∥.

Fix a standard plane P0 : G2(R
n+1). Consider deg(L|G1(P0)) : Z.

We can arrange deg(L|G1(P0)) = 0 by replacing L with some
L⊗O(d).

Fact: G2(R
n+1) is indecomposable.

So deg(L|G1(P)) = 0 for every plane P : G2(R
n+1).

Thus: L(p) = L(p′) for all p, p′ on G1(P).

Pic(Pn) = Z

▶ Adjust L so that we can expect ∥L = O(0)∥.

Fix a standard plane P0 : G2(R
n+1). Consider deg(L|G1(P0)) : Z.

We can arrange deg(L|G1(P0)) = 0 by replacing L with some
L⊗O(d).

Fact: G2(R
n+1) is indecomposable.

So deg(L|G1(P)) = 0 for every plane P : G2(R
n+1).

Thus: L(p) = L(p′) for all p, p′ on G1(P).

Pic(Pn) = Z

▶ Adjust L so that we can expect ∥L = O(0)∥.

Fix a standard plane P0 : G2(R
n+1). Consider deg(L|G1(P0)) : Z.

We can arrange deg(L|G1(P0)) = 0 by replacing L with some
L⊗O(d).

Fact: G2(R
n+1) is indecomposable.

So deg(L|G1(P)) = 0 for every plane P : G2(R
n+1).

Thus: L(p) = L(p′) for all p, p′ on G1(P).

Pic(Pn) = Z

▶ Adjust L so that we can expect ∥L = O(0)∥.

Fix a standard plane P0 : G2(R
n+1). Consider deg(L|G1(P0)) : Z.

We can arrange deg(L|G1(P0)) = 0 by replacing L with some
L⊗O(d).

Fact: G2(R
n+1) is indecomposable.

So deg(L|G1(P)) = 0 for every plane P : G2(R
n+1).

Thus: L(p) = L(p′) for all p, p′ on G1(P).

Pic(Pn) = Z

▶ Adjust L so that we can expect ∥L = O(0)∥.

Fix a standard plane P0 : G2(R
n+1). Consider deg(L|G1(P0)) : Z.

We can arrange deg(L|G1(P0)) = 0 by replacing L with some
L⊗O(d).

Fact: G2(R
n+1) is indecomposable.

So deg(L|G1(P)) = 0 for every plane P : G2(R
n+1).

Thus: L(p) = L(p′) for all p, p′ on G1(P).

Pic(Pn) = Z

▶ Adjust L so that we can expect ∥L = O(0)∥.

Fix a standard plane P0 : G2(R
n+1). Consider deg(L|G1(P0)) : Z.

We can arrange deg(L|G1(P0)) = 0 by replacing L with some
L⊗O(d).

Fact: G2(R
n+1) is indecomposable.

So deg(L|G1(P)) = 0 for every plane P : G2(R
n+1).

Thus: L(p) = L(p′) for all p, p′ on G1(P).

Pic(Pn) = Z
▶ Use interpolation.

For p ̸= p′ in Pn we have deg(L|G1(⟨p,p′⟩)) = 0, so:

p ̸= p′ → L(p) = L(p′)

Fix standard points p0, p1 : Pn.

L = const L(p0) on Pn \ {p0}
L = const L(p1) on Pn \ {p1}

For p : Pn \ {p0, p1} we have two identifications:

R1 = L(p) = R1

Fact: Every function Pn \ {p0, p1} → R× is constant.

So we conclude: L = O(0).

Pic(Pn) = Z
▶ Use interpolation.

For p ̸= p′ in Pn we have deg(L|G1(⟨p,p′⟩)) = 0, so:

p ̸= p′ → L(p) = L(p′)

Fix standard points p0, p1 : Pn.

L = const L(p0) on Pn \ {p0}
L = const L(p1) on Pn \ {p1}

For p : Pn \ {p0, p1} we have two identifications:

R1 = L(p) = R1

Fact: Every function Pn \ {p0, p1} → R× is constant.

So we conclude: L = O(0).

Pic(Pn) = Z
▶ Use interpolation.

For p ̸= p′ in Pn we have deg(L|G1(⟨p,p′⟩)) = 0, so:

p ̸= p′ → L(p) = L(p′)

Fix standard points p0, p1 : Pn.

L = const L(p0) on Pn \ {p0}
L = const L(p1) on Pn \ {p1}

For p : Pn \ {p0, p1} we have two identifications:

R1 = L(p) = R1

Fact: Every function Pn \ {p0, p1} → R× is constant.

So we conclude: L = O(0).

Pic(Pn) = Z
▶ Use interpolation.

For p ̸= p′ in Pn we have deg(L|G1(⟨p,p′⟩)) = 0, so:

p ̸= p′ → L(p) = L(p′)

Fix standard points p0, p1 : Pn.

L = const L(p0) on Pn \ {p0}
L = const L(p1) on Pn \ {p1}

For p : Pn \ {p0, p1} we have two identifications:

R1 = L(p) = R1

Fact: Every function Pn \ {p0, p1} → R× is constant.

So we conclude: L = O(0).

Pic(Pn) = Z
▶ Use interpolation.

For p ̸= p′ in Pn we have deg(L|G1(⟨p,p′⟩)) = 0, so:

p ̸= p′ → L(p) = L(p′)

Fix standard points p0, p1 : Pn and paths L(p0) = R1, L(p1) = R1.

L = const L(p0) on Pn \ {p0}
L = const L(p1) on Pn \ {p1}

For p : Pn \ {p0, p1} we have two identifications:

R1 = L(p) = R1

Fact: Every function Pn \ {p0, p1} → R× is constant.

So we conclude: L = O(0).

Pic(Pn) = Z
▶ Use interpolation.

For p ̸= p′ in Pn we have deg(L|G1(⟨p,p′⟩)) = 0, so:

p ̸= p′ → L(p) = L(p′)

Fix standard points p0, p1 : Pn and paths L(p0) = R1, L(p1) = R1.

L = constR1 on Pn \ {p0}
L = constR1 on Pn \ {p1}

For p : Pn \ {p0, p1} we have two identifications:

R1 = L(p) = R1

Fact: Every function Pn \ {p0, p1} → R× is constant.

So we conclude: L = O(0).

Pic(Pn) = Z
▶ Use interpolation.

For p ̸= p′ in Pn we have deg(L|G1(⟨p,p′⟩)) = 0, so:

p ̸= p′ → L(p) = L(p′)

Fix standard points p0, p1 : Pn and paths L(p0) = R1, L(p1) = R1.

L = constR1 on Pn \ {p0}
L = constR1 on Pn \ {p1}

For p : Pn \ {p0, p1} we have two identifications:

R1 = L(p) = R1

Fact: Every function Pn \ {p0, p1} → R× is constant.

So we conclude: L = O(0).

Pic(Pn) = Z
▶ Use interpolation.

For p ̸= p′ in Pn we have deg(L|G1(⟨p,p′⟩)) = 0, so:

p ̸= p′ → L(p) = L(p′)

Fix standard points p0, p1 : Pn and paths L(p0) = R1, L(p1) = R1.

L = constR1 on Pn \ {p0}
L = constR1 on Pn \ {p1}

For p : Pn \ {p0, p1} we have two identifications:

R1 = L(p) = R1

Fact: Every function Pn \ {p0, p1} → R× is constant.

So we conclude: L = O(0).

Pic(Pn) = Z
▶ Use interpolation.

For p ̸= p′ in Pn we have deg(L|G1(⟨p,p′⟩)) = 0, so:

p ̸= p′ → L(p) = L(p′)

Fix standard points p0, p1 : Pn and paths L(p0) = R1, L(p1) = R1.

L = constR1 on Pn \ {p0}
L = constR1 on Pn \ {p1}

For p : Pn \ {p0, p1} we have two identifications:

R1 = L(p) = R1

Fact: Every function Pn \ {p0, p1} → R× is constant.

So we conclude: L = O(0).

Application: Aut(Pn)

Recall: Every function Rm → Rn is given by n polynomials in m
variables.

Theorem
Every function f : Pm → Pn is given by n + 1 homogeneous
polynomials of some degree d in m + 1 variables.

Core step: d := deg(O(1) ◦ f)

Corollary

Every automorphism Pn ∼−→ Pn is given by an invertible matrix,
unique up to scalar multiplication.

Aut(Pn) ∼= PGLn+1(R)

Application: Aut(Pn)

Recall: Every function Rm → Rn is given by n polynomials in m
variables.

Theorem
Every function f : Pm → Pn is given by n + 1 homogeneous
polynomials of some degree d in m + 1 variables.

Core step: d := deg(O(1) ◦ f)

Corollary

Every automorphism Pn ∼−→ Pn is given by an invertible matrix,
unique up to scalar multiplication.

Aut(Pn) ∼= PGLn+1(R)

Application: Aut(Pn)

Recall: Every function Rm → Rn is given by n polynomials in m
variables.

Theorem
Every function f : Pm → Pn is given by n + 1 homogeneous
polynomials of some degree d in m + 1 variables.

Core step: d := deg(O(1) ◦ f)

Corollary

Every automorphism Pn ∼−→ Pn is given by an invertible matrix,
unique up to scalar multiplication.

Aut(Pn) ∼= PGLn+1(R)

Application: Aut(Pn)

Recall: Every function Rm → Rn is given by n polynomials in m
variables.

Theorem
Every function f : Pm → Pn is given by n + 1 homogeneous
polynomials of some degree d in m + 1 variables.

Core step: d := deg(O(1) ◦ f)

Corollary

Every automorphism Pn ∼−→ Pn is given by an invertible matrix,
unique up to scalar multiplication.

Aut(Pn) ∼= PGLn+1(R)

