Structured Frobenius for Fibrations Defined from a Generic Point

HoTT-UF 2024

Sina Hazratpour
j.w.w. Emily Riehl

April 2024

Frobenius condition

- The Frobenius condition is a property of weak factorization systems (WFS) that requires pullback along maps in the right class to preserve maps in the left class.

Frobenius condition

- The Frobenius condition is a property of weak factorization systems (WFS) that requires pullback along maps in the right class to preserve maps in the left class.
- In a locally cartesian closed category with a WFS:

Frobenius condition \Longleftrightarrow R-maps closed under pushforwards along R-maps.

Frobenius condition

- The Frobenius condition is a property of weak factorization systems (WFS) that requires pullback along maps in the right class to preserve maps in the left class.
- In a locally cartesian closed category with a WFS:

Frobenius condition \Longleftrightarrow R-maps closed under pushforwards along R-maps.

- In a full model category: Frobenius condition \Longleftrightarrow right properness.

Frobenius condition \& HoTT

- Interpretation of Π-types; instrumental in obtaining models of HoTT in simplicial and cubical sets.

Frobenius condition \& HoTT

- Interpretation of Π-types; instrumental in obtaining models of HoTT in simplicial and cubical sets.
- In Voevodsky's simplicial model of HoTT

Frobenius condition \& HoTT

- Interpretation of Π-types; instrumental in obtaining models of HoTT in simplicial and cubical sets.
- In Voevodsky's simplicial model of HoTT
- R-maps = Kan fibrations

Frobenius condition \& HoTT

- Interpretation of Π-types; instrumental in obtaining models of HoTT in simplicial and cubical sets.
- In Voevodsky's simplicial model of HoTT
- R-maps = Kan fibrations
- The Frobenius condition is justified by the non-constructive use of minimal fibrations.

Frobenius condition \& HoTT

- Interpretation of Π-types; instrumental in obtaining models of HoTT in simplicial and cubical sets.
- In Voevodsky's simplicial model of HoTT
- R-maps = Kan fibrations
- The Frobenius condition is justified by the non-constructive use of minimal fibrations.
- In Cubical Type Theory, Coquand gave a constructive proof of the Frobenius condition by reducing fibration structures to the more manageable composition structures.

Category-theoretic proofs of the Frobenius condition

- Previous work by Awodey and Gambino-Sattler on obtaining a categorical proof which is more conceptual and less syntactical.

Category-theoretic proofs of the Frobenius condition

- Previous work by Awodey and Gambino-Sattler on obtaining a categorical proof which is more conceptual and less syntactical.
- We used 2-categorical methods to give a proof of a functorial Frobenius condition.

Category-theoretic proofs of the Frobenius condition

- Previous work by Awodey and Gambino-Sattler on obtaining a categorical proof which is more conceptual and less syntactical.
- We used 2-categorical methods to give a proof of a functorial Frobenius condition.
- Our proof does not require connection structures on the interval object since we work with the "unbiased" fibrations.

Category-theoretic proofs of the Frobenius condition

- Previous work by Awodey and Gambino-Sattler on obtaining a categorical proof which is more conceptual and less syntactical.
- We used 2-categorical methods to give a proof of a functorial Frobenius condition.
- Our proof does not require connection structures on the interval object since we work with the "unbiased" fibrations.
- We work in the more general setting of LCCCs.

Category-theoretic proofs of the Frobenius condition

- Previous work by Awodey and Gambino-Sattler on obtaining a categorical proof which is more conceptual and less syntactical.
- We used 2-categorical methods to give a proof of a functorial Frobenius condition.
- Our proof does not require connection structures on the interval object since we work with the "unbiased" fibrations.
- We work in the more general setting of LCCCs.
- Equational approach based on mates from 2-category theory, instead of reasoning by universal properties.

Setup

- A pointed $\operatorname{LCCC}(\mathcal{E}, 0: 1 \rightarrow \mathcal{E})$
- A category TFib $_{\text {cart }} \rightarrow \mathcal{E}_{\text {cart }}^{2}$ of stably structured trivial fibrations satisfying the axioms STF1-STF3 in below.

Axioms STF1-STF3

The free retract category is defined by the following pushout of categories:

And, the category of maps with a specified section is defined by the following pullback of categories:

Axioms STF1-STF3

STF1 Trivial fibrations have a stable choice of section:

STF2 Trivial fibrations are stable under pushforwards along any map:

STF3 Trivial fibrations are closed under retract:

$\mathrm{TFib}_{\text {cart }} \times_{\mathcal{E}} \mathcal{E}_{\text {cart }}^{\mathcal{B}}-\cdots$ TFib $_{\text {cart }} \times{ }_{\mathcal{E}} \mathcal{E}_{\text {cart }}^{\mathcal{D}}$ $u \times$ id $\downarrow \downarrow u \times i d$ $\mathcal{E}_{\text {cart }}^{\AA} \longrightarrow \Pi \mathcal{E}_{\text {cart }}^{\bigotimes}$
$\mathrm{TFib}_{\text {cart }} \times \mathcal{E}_{\text {cart }}^{\mathcal{Z}} \mathcal{E}_{\text {cart }}^{2 \times \mathcal{R}} \xrightarrow{\mathrm{ev}_{r}} \mathrm{TFib}_{\text {cart }}$
 $\mathcal{E}_{\text {cart }}^{2 \times \mathcal{R}} \longrightarrow \mathcal{E v}_{\text {cart }}^{2}$

Fibrations from Trivial Fibrations

For the generic point $\delta: 1 \rightarrow \mathbb{\square}$ and a map $p: A \rightarrow X$, the Leibniz
exponential $\delta \Rightarrow p$ is the gap map to the pullback. This defines a
cartesian functor $\delta \Rightarrow(-): \mathcal{E}^{2} \rightarrow \mathcal{E}^{2}$.

Fibrations from Trivial Fibrations

For the generic point $\delta: 1 \rightarrow \mathbb{\square}$ and a map $p: A \rightarrow X$, the Leibniz exponential $\delta \Rightarrow p$ is the gap map to the pullback. This defines a cartesian functor $\delta \Rightarrow(-): \mathcal{E}^{2} \rightarrow \mathcal{E}^{2}$.

We define a category of stably structured fibrations from the
category of stably structured trivial fibrations:

Functorial Structured Frobenius Theorem

Functorial Structured Frobenius Theorem

Functorial Structured Frobenius Theorem

To obtain Π^{\prime} we post-compose with the map ev r : TFib $_{\text {cart }} \times_{\mathcal{E}_{\text {cart }}^{2}} \mathcal{E}_{\text {cart }}^{\mathcal{1} \mathcal{R}} \rightarrow$ TFib $b_{\text {cart }}$.

Functorial Structured Frobenius Theorem

$\mathrm{Fib}_{\text {cart }} \times \mathcal{E} \mathrm{Fib}_{\text {cart }} \xrightarrow{u \times \mathrm{id}} \mathcal{E}_{\text {cart }}^{\mathcal{D}} \times \mathcal{E} \mathrm{Fib}_{\text {cart }} \xrightarrow{?} \mathcal{E}_{\text {cart }}^{2 \times \mathcal{R}}$

Constructing the red arrow

$\delta \Rightarrow p_{*} q$ is a retract of a pushforward of $\delta \Rightarrow q$:

$$
\begin{aligned}
& \left(\Pi_{A} B\right)^{0} \times \mathbb{\square} \xrightarrow{\kappa} \Pi_{A^{0} \times 0} B^{0} \times \mathbb{\square} \xrightarrow{\rho}\left(\Pi_{A} B\right)^{0} \times \mathbb{0} \\
& \delta \Rightarrow p_{*} q \downarrow \mid\left(p^{0} \times\right)_{*}(\delta \Rightarrow q) \quad \downarrow^{\delta \Rightarrow p_{*} q} \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{0} \times 0}\left(B_{\epsilon}\right) \xrightarrow[\rho_{\epsilon}]{ }\left(\Pi_{A} B\right)_{\epsilon}
\end{aligned}
$$

Constructing the red arrow

$\delta \Rightarrow p_{*} q$ is a retract of a pushforward of $\delta \Rightarrow q$:

$$
\begin{aligned}
& \left(\Pi_{A} B\right)^{\mathbb{0}} \times \mathbb{\square} \xrightarrow{\kappa} \Pi_{A^{0} \times \mathbb{0}} B^{\mathbb{0}} \times \mathbb{\square} \xrightarrow{\rho}\left(\Pi_{A} B\right)^{\mathbb{0}} \times \mathbb{\square} \\
& \delta \Rightarrow p_{*} q \downarrow\left(p^{0} \times 0\right)_{*}(\delta \Rightarrow q) \quad \downarrow \delta \Rightarrow p_{*} q \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{0} \times \mathbb{0}}\left(B_{\epsilon}\right) \xrightarrow[\rho_{\epsilon}]{ }\left(\Pi_{A} B\right)_{\epsilon}
\end{aligned}
$$

This we show later using the calculus of mates from 2-category theory.

Finishing the proof

- By (BC), the vertical morphisms and the canonical transformations κ_{ϵ} and κ are stable under pullback.

Finishing the proof

- By (BC), the vertical morphisms and the canonical transformations κ_{ϵ} and κ are stable under pullback.
- By (BC) + (STF1), ρ_{ϵ} and ρ are pullback stable.

Finishing the proof

- By (BC), the vertical morphisms and the canonical transformations κ_{ϵ} and κ are stable under pullback.
- By (BC) + (STF1), ρ_{ϵ} and ρ are pullback stable.
- (STF2) provides a pullback stable trivial fibration structure on $\left(p^{\square} \times \square\right)_{*}(\delta \Rightarrow q)$

Finishing the proof

- By (BC), the vertical morphisms and the canonical transformations κ_{ϵ} and κ are stable under pullback.
- By (BC) + (STF1), ρ_{ϵ} and ρ are pullback stable.
- (STF2) provides a pullback stable trivial fibration structure on $\left(p^{\square} \times \square\right)_{*}(\delta \Rightarrow q)$

Finishing the proof

- By (BC), the vertical morphisms and the canonical transformations κ_{ϵ} and κ are stable under pullback.
- By (BC) + (STF1), ρ_{ϵ} and ρ are pullback stable.
- (STF2) provides a pullback stable trivial fibration structure on $\left(p^{\square} \times \square\right)_{*}(\delta \Rightarrow q)$

- Composing with (STF3) construct the desired lift Fib cart $\times_{\mathcal{E}}$ Fib $_{\text {cart }} \rightarrow$ TFib $_{\text {cart }}$.

Proof of the Retract Diagram Using Mates

The Mate Correspondence

The mates correspondence gives an extended, double-categorical, version of adjoint transposition: a suitably-oriented 2-cell in a square involving parallel left adjoints is mates with another 2-cell in the corresponding square formed by their right adjoints.

Theorem (Kelly-Street)

Consider the pair of double categories \mathbb{L} adj and Radj whose:

- objects are categories,
- horizontal arrows are functors,
- vertical arrows are fully-specified adjunctions pointing in the direction of the left adjoint, and
- squares of \mathbb{L} adj (resp. Radj) are natural transformations between the squares of functors formed by the left (resp. right) adjoints.

Then

$$
\mathbb{L a d j} \cong \mathbb{R a d j}
$$

which acts on squares by taking mates.

The basic 2-cells

From the counit 2-cells

$$
\begin{aligned}
& / 0 \xrightarrow{0!} / 1 \quad / 1 \xrightarrow{0^{*}} / 0 \\
& { }^{0 *} \uparrow \quad \Downarrow \pi \| \\
& / 1=/ 1 \\
& \begin{array}{c}
{ }^{0_{*} \uparrow} \Downarrow \nu \quad \| \\
/ \mathbb{}=/ \mathbb{}
\end{array}
\end{aligned}
$$

The basic 2-cells

From the counit 2-cells

$$
\begin{array}{cc}
/ 0 \xrightarrow{0_{!}} & / 1 \\
0^{*} \uparrow & \Downarrow \pi
\end{array} \|
$$

$$
/ 1 \xrightarrow{0^{*}} / \mathbb{D}
$$

$$
\begin{gathered}
0_{*} \uparrow \Downarrow \nu \\
/ \mathbb{}=/ \mathbb{} \quad \|
\end{gathered}
$$

we obtain the spans

$$
X^{\natural} \stackrel{\pi}{\longleftarrow} X^{\rrbracket} \times \mathbb{\square} \xrightarrow{\epsilon} X
$$

natural in X.

The basic 2-cells

From the counit 2-cells

$$
\begin{aligned}
& / 0 \xrightarrow{0_{!}} / 1 \quad / 1 \xrightarrow{0^{*}} / 0
\end{aligned}
$$

we obtain the spans

$$
X^{\natural} \stackrel{\pi}{\longleftarrow} X^{\rrbracket} \times \mathbb{\square} \xrightarrow{\epsilon} X
$$

natural in X.

$$
\begin{aligned}
& A^{\mathbb{0}} \times \mathbb{\square} \xrightarrow{\pi} A^{\mathbb{0}} \\
& \left.p^{0} \times \downarrow \downarrow \quad\right\lrcorner \quad \downarrow \\
& X^{0} \times \mathbb{\square} \underset{\pi}{\longrightarrow} X^{0}
\end{aligned}
$$

Leibniz Exponential from the basic 2-cells

The component of the whiskered counit

$$
\begin{aligned}
& / X^{\rrbracket} \xrightarrow{\pi^{*}} / X^{\rrbracket} \times \rrbracket \\
& \pi_{*} \uparrow \quad \Downarrow \nu \quad \| \\
& \mid X \xrightarrow{\epsilon^{*}} / X^{\rrbracket} \times \rrbracket=/ X^{\rrbracket} \times \rrbracket
\end{aligned}
$$

at $p: A \rightarrow X$ is the map $\delta \Rightarrow p: A^{\rrbracket} \times \rrbracket \rightarrow A_{\epsilon}$.

Constructing κ_{ϵ}

$$
\begin{aligned}
& A^{\square} \times \square \xrightarrow{\epsilon} A
\end{aligned}
$$

Constructing κ_{ϵ}

$$
\begin{aligned}
& / A^{0} \times 0 \xrightarrow{\epsilon_{1}} / A \\
& \left(p^{0} \times 0\right)!\quad \quad \rho_{1} \\
& \left./ X^{\square} \times \mathbb{\epsilon _ { ! }}\right] / X
\end{aligned}
$$

Constructing κ_{ϵ}

$$
\begin{aligned}
& / A^{0} \times 0 \xrightarrow{\epsilon_{1}} / A \\
& \left(p^{0} \times 1\right)^{*} \uparrow \quad \Downarrow{ }^{*} \uparrow p^{*} \\
& / X^{0} \times \mathbb{\epsilon _ { 1 }} \xrightarrow{\downarrow} / X
\end{aligned}
$$

Constructing κ_{ϵ}

$$
\begin{aligned}
& / A^{\square} \times \square \stackrel{\epsilon^{*}}{\longleftarrow} / A \\
& \left(p^{0} \times 0\right)^{*} \uparrow \cong \uparrow p^{*} \\
& / X^{\rrbracket} \times \mathbb{\epsilon ^ { * }} / X
\end{aligned}
$$

Constructing κ_{ϵ}

$$
\begin{gathered}
/ A^{\mathbb{1}} \times \mathbb{\epsilon ^ { * }} / A \\
\left(p^{0} \times \mathbb{0}\right)_{*} \downarrow \Uparrow \kappa_{\epsilon} \quad \downarrow_{p_{*}} \\
/ X^{\mathbb{Q}} \times \mathbb{\epsilon ^ { * }} / X
\end{gathered}
$$

Constructing κ_{ϵ}

$$
\begin{aligned}
& A^{0} \times \mathbb{\square} \xrightarrow{\epsilon} A \\
& / A^{0} \times \mathbb{\square} \xrightarrow{\epsilon_{1}} / A \\
& / A^{0} \times 0 \stackrel{\epsilon^{*}}{\leftarrow} / A
\end{aligned}
$$

Constructing κ_{ϵ}

$/ A^{0} \times \mathbb{\square} \stackrel{\epsilon^{*}}{\longleftarrow} / A$

$$
p^{0} \times 0 \downarrow \quad \downarrow \begin{aligned}
& p \\
& p
\end{aligned}\left(p^{0} \times 0\right)!\downarrow \quad \rho_{1} \quad \rightsquigarrow \quad\left(p^{0} \times 0\right) * \downarrow \downarrow \kappa_{\epsilon} \quad \downarrow p_{*}
$$

$$
X^{0} \times 0 \underset{\epsilon}{\longrightarrow} X \quad \quad\left|X^{0} \times \mathbb{\epsilon} \longrightarrow\right| X \quad \quad X^{0} \times \mathbb{\square} \underset{\epsilon^{*}}{\leftrightarrows} / X
$$

The component of κ_{ϵ} at $q: B \rightarrow A$ defines a map $\kappa_{\epsilon}:\left(\Pi_{A} B\right)_{\epsilon} \rightarrow \Pi_{A^{\dagger} \times \|} B_{\epsilon}$ over $X^{\bullet} \times 0$.

Constructing κ_{ϵ}

So far,

$$
\begin{aligned}
& \left(\Pi_{A} B\right)^{\square} \times \square \quad \Pi_{A^{0} \times \mathbb{1}} B^{\square} \times \square \\
& \left.\delta \Rightarrow p_{*} q \downarrow \downarrow{ }^{0} \times 0\right)_{*}(\delta \Rightarrow q) \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{0} \times 0}\left(B_{\epsilon}\right)
\end{aligned}
$$

Constructing κ_{ϵ}

So far,

$$
\begin{aligned}
& \left(\Pi_{A} B\right)^{0} \times \mathbb{\square}--\stackrel{\kappa}{-}>\Pi_{A^{0} \times \mathbb{1}} B^{0} \times \mathbb{0} \\
& \delta \Rightarrow p_{*} q \downarrow \quad \downarrow\left(p^{0} \times \mathrm{C}\right)_{*}(\delta \Rightarrow q) \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{1} \times 1}\left(B_{\epsilon}\right)
\end{aligned}
$$

Next, we find the left top arrow.

Constructing κ from κ_{ϵ}

$$
\begin{aligned}
& \mid A^{1} \times 1 \longleftarrow \epsilon^{*} / A
\end{aligned}
$$

$$
\begin{aligned}
& \mid X^{1} \times 0 \stackrel{\epsilon^{*}}{\longleftarrow} / X
\end{aligned}
$$

Constructing κ from κ_{ϵ}

Constructing κ from κ_{ϵ}

$$
\begin{aligned}
& / A^{\mathbb{0}} \times \mathbb{\square} \pi^{\pi^{*}} / A^{\rrbracket} \longleftarrow \pi_{*} / A^{\mathbb{0}} \times \mathbb{\epsilon ^ { * }} \epsilon^{*} / A
\end{aligned}
$$

Constructing κ from κ_{ϵ}
$/ A^{\rrbracket} \times \rrbracket \longleftarrow \pi^{*} / A^{\rrbracket} \stackrel{\pi_{*}}{\longleftarrow} / \boldsymbol{A}^{\rrbracket} \times \rrbracket \underbrace{\epsilon^{*}} / \boldsymbol{A}$

$$
\left(p^{0} \times 0\right)_{*} \downarrow \downarrow \quad \cong \quad p_{*}^{0} \downarrow \quad \cong \begin{gathered}
\mid \\
\left(p^{0} \times 0\right)_{*} \\
\downarrow
\end{gathered} \Uparrow \kappa_{\epsilon} \quad \downarrow p_{*}
$$

$$
/ X^{\rrbracket} \times \mathbb{\pi ^ { * }} / X^{\rrbracket} \longleftarrow \pi_{*} / X^{\mathbb{\square}} \times \mathbb{\epsilon ^ { * }} / X
$$

The component of the composite 2 -cell at $q: B \rightarrow A$ defines a map

$$
\kappa:\left(\Pi_{A} B\right)^{\mathbb{a}} \times \mathbb{\square} \rightarrow \Pi_{A^{0} \times \mathbb{0}}\left(B^{\square} \times \mathbb{\square}\right)
$$

over $X^{\rrbracket} \times \rrbracket$.

Constructing κ from κ_{ϵ}

The component of the composite 2-cell at $q: B \rightarrow A$ defines a map

$$
\kappa:\left(\Pi_{A} B\right)^{\square} \times \square \rightarrow \Pi_{A^{0} \times \square}\left(B^{\square} \times \mathbb{0}\right)
$$

over $X^{\rrbracket} \times \rrbracket$.

Constructing κ from κ_{ϵ}

$$
B / A
$$

Constructing κ from κ_{ϵ}

$$
B_{\epsilon} / A^{0} \times \mathbb{\square} \stackrel{\epsilon^{*}}{\longleftrightarrow} B / A
$$

Constructing κ from κ_{ϵ}

$$
B^{0} / A^{0} \stackrel{\pi_{*}}{\longleftrightarrow} B_{\epsilon} / A^{0} \times 0 \stackrel{\epsilon^{*}}{\longleftrightarrow} B / A
$$

Constructing κ from κ_{ϵ}

$$
B^{0} \times 0 / A^{0} \times 0 \longleftarrow \pi^{\pi^{*}} B^{0} / A^{0} \stackrel{\pi_{*}}{\longleftarrow} B_{\epsilon} / A^{0} \times \mathbb{\epsilon ^ { * }} B / A
$$

Constructing κ from κ_{ϵ}

$$
\begin{aligned}
& B^{0} \times \mathbb{0} / A^{0} \times \mathbb{\pi ^ { * }} \longleftarrow B^{0} / A^{0} \stackrel{\pi_{*}}{\longleftrightarrow} B_{\epsilon} / A^{0} \times \mathbb{\square} \epsilon^{*} \longleftrightarrow B / A \\
& \left(p^{0} \times 1\right)_{*} \downarrow \\
& \Pi_{A^{0} \times 0}\left(B^{0} \times 0\right) / X^{0} \times 0
\end{aligned}
$$

Constructing κ from κ_{ϵ}

$$
\begin{gathered}
B / A \\
I_{p_{*}} \\
\Pi_{A} B / X
\end{gathered}
$$

Constructing κ from κ_{ϵ}

Constructing κ from κ_{ϵ}

$$
\left(\Pi_{A} B\right)^{0} / X^{0} \longleftarrow \pi_{\pi_{*}}^{\stackrel{B / A}{p_{*}}}\left(\Pi_{A} B\right)_{\epsilon} / X^{\rrbracket} \times \mathbb{\rho _ { * }} \longleftarrow \Pi_{A} B / X
$$

Constructing κ from κ_{ϵ}

Constructing κ from κ_{ϵ}

We now have to verify that the square

$$
\begin{aligned}
& \left(\Pi_{A} B\right)^{\square} \times \square \xrightarrow{\kappa} \Pi_{A^{0} \times \mathbb{Q}} B^{\square} \times \mathbb{\square} \\
& \delta \Rightarrow p_{*} q \downarrow \downarrow\left(p^{0} \times 0\right)_{*}(\delta \Rightarrow q) \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{0} \times \mathbb{0}}\left(B_{\epsilon}\right)
\end{aligned}
$$

commutes.

Constructing κ from κ_{ϵ}

$$
\begin{aligned}
& \left(\Pi_{A} B\right)^{0} \times{ }^{\square} \\
& \delta \Rightarrow p_{*} q \downarrow \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{0} \times 0}\left(B_{\epsilon}\right) \\
& \left(\Pi_{A} B\right)^{0} \times \mathbb{\square} \xrightarrow{\kappa} \Pi_{A^{\square} \times 0} B^{\square} \times 0 \\
& \downarrow^{\left(\rho^{0} \times 1\right)_{*}(\delta \Rightarrow q)} \\
& \Pi_{A^{0} \times 0}\left(B_{\epsilon}\right)
\end{aligned}
$$

Constructing κ from κ_{ϵ}

That reduces to asking for the equality of the pasted composites below:

$$
\begin{aligned}
& / A^{0} \times \mathbb{\square}=/ A^{0} \times \mathbb{D} \quad / A^{0} \times \mathbb{\square}=/ A^{0} \times \mathbb{D} \\
& \|\quad \Uparrow \nu \quad\| \quad\left(p^{0} \times 1\right)_{*} \downarrow \downarrow{ }^{1} \|\left(p^{0} \times 1\right)_{*}
\end{aligned}
$$

$$
\begin{aligned}
& \left(p^{0} \times 0\right)_{\star} \downarrow \cong \underset{\downarrow}{p_{*}^{0}} \cong \downarrow^{\left(p^{0} \times 0\right)_{*}}\| \|\left\|^{1}\right\|
\end{aligned}
$$

Constructing κ from κ_{ϵ}

That reduces to asking for the equality of the pasted composites below:

$$
\begin{aligned}
& / A^{0} \times 0=/ A^{0} \times 0 \quad / A^{0} \times 0=\left[A^{0} \times 0\right. \\
& \|\quad \Uparrow \nu \quad\| \quad\left(p^{0} \times 1\right) * \downarrow \\
& \downarrow_{\left(p^{1} \times 1\right) *}
\end{aligned}
$$

We simplify this verification by taking vertical mates, then horizontal mates, and then again the vertical mates of the two sides of the pasting equality (c.f. functoriality of mating).

Constructing κ from κ_{ϵ}

Finally, we need to verify that the following pasting diagrams are equal to each other.

$/ A^{0} \times 0 \xrightarrow{\pi_{!}} / A^{0} \xrightarrow{\pi^{*}} / A^{0} \times 0$

$$
\left(p^{0} \times 0\right)!\downarrow \quad \underset{\downarrow}{p_{!}^{0}} \cong \underset{\downarrow}{\square}
$$

$$
/ X^{\mathbb{\rrbracket}} \times \mathbb{\pi _ { ! }} \longrightarrow / X^{\rrbracket} \xrightarrow[\pi^{*}]{ } / X^{\mathbb{\square}} \times \rrbracket
$$

$\Uparrow \iota$
$/ X^{\rrbracket} \times \mathbb{}=/ X^{\rrbracket} \times \mathbb{\square}$

Constructing κ from κ_{ϵ}

The pasting diagrams above are equal if and only if

$$
\begin{aligned}
& / A^{0} \times 0 \xrightarrow{\left(p^{0} \times 1\right)} / X^{0} \times 0 \xrightarrow{\pi_{1}} / X^{0} \\
& \|\quad\| \quad \text { 介 } \quad \| \backslash^{*} \\
& / A^{\rrbracket} \times \mathbb{(p ^ { 0 } \times 0) !} \quad / X^{\rrbracket} \times \rrbracket=/ X^{\rrbracket} \times \rrbracket
\end{aligned}
$$

$$
\begin{aligned}
& / A^{0} \times \mathbb{\square} \xrightarrow{\pi_{!}} / A^{0} \xrightarrow{p_{1}^{n}} / X^{0} \\
& \| \quad \Uparrow \iota \quad \downarrow^{*} \cong \quad \downarrow^{*} \\
& / A^{\rrbracket} \times \mathbb{\square} / A^{\mathbb{Q}} \times \mathbb{\square} \xrightarrow[\left(p^{0} \times \mathbb{0}\right)!]{ } / X^{\rrbracket} \times \mathbb{\square}
\end{aligned}
$$

Constructing κ from κ_{ϵ}

The pasting diagrams above are equal if and only if
$/ A^{0} \times 0 \xrightarrow{\left(p^{0} \times 0\right)!} / X^{\natural} \times 0 \xrightarrow{\pi_{!}} / X^{0}$

$$
/ A^{\mathbb{0}} \times \mathbb{0} \underset{\left(p^{0} \times \mathbb{0}\right)!}{\longrightarrow} / X^{\mathbb{0}} \times \mathbb{=}=X^{\mathbb{0}} \times \mathbb{0}
$$

Taking mates in the vertical direction reduces to a establishing a pasting equation between the same identity 2 -cells.

Constructing the retract map ρ_{ϵ}

Since p is a fibration, $\delta \Rightarrow p$ has a section:

$$
\begin{aligned}
& / A_{\epsilon} \longleftarrow{ }^{\left(p^{*} \epsilon\right)^{*}} / A \\
& \sigma^{*} \uparrow \cong \\
& / A^{\rrbracket} \times \mathbb{\epsilon ^ { * }} / A
\end{aligned}
$$

Constructing the retract map ρ_{ϵ}

$$
\begin{aligned}
& / A_{\epsilon}=/ A_{\epsilon} \stackrel{\left(p^{*} \epsilon\right)^{*}}{=} / A
\end{aligned}
$$

$$
\begin{aligned}
& \left|X^{0} \times 0=\right| X^{0} \times 0 \stackrel{\epsilon^{*}}{\leftrightarrows}
\end{aligned}
$$

Constructing the retract map ρ_{ϵ}

This gives rise to a pasting equation between the mates

$$
\begin{aligned}
& / A_{\epsilon}=/ A_{\epsilon} \stackrel{\left(p^{*} \epsilon\right)^{*}}{\longleftarrow} / A \\
& / A_{\epsilon} \stackrel{\left(p^{*} \epsilon\right)^{*}}{\leftrightarrows} / A
\end{aligned}
$$

$$
\begin{aligned}
& / X^{\rrbracket} \times \rrbracket=/ X^{\rrbracket} \times \rrbracket{\overleftarrow{\epsilon^{*}}} / X
\end{aligned}
$$

Constructing the retract map ρ_{ϵ}

$$
\begin{aligned}
& / X \longleftarrow / A \\
& / X \stackrel{p_{*}}{\longleftarrow} / A \\
& \epsilon^{*} \downarrow=\downarrow_{p_{*}}= \\
& / X^{\rrbracket} \times \rrbracket \overleftarrow{\epsilon^{*}} / X
\end{aligned}
$$

Constructing the retract map ρ_{ϵ}

The pasting equality above proves that ρ_{ϵ} is a retract of $\kappa_{e p}$.

$$
\begin{aligned}
& \delta \Rightarrow p_{*} q \downarrow \quad \downarrow\left(p^{p} \times\right)_{*}(\delta \Rightarrow q) \quad \downarrow \delta \Rightarrow p_{*} q \\
& \left(\Pi_{A} B\right)_{\epsilon} \xrightarrow[\kappa_{\epsilon}]{ } \Pi_{A^{1} \times 1}\left(B_{\epsilon}\right) \xrightarrow[\rho_{\epsilon}]{ }\left(\Pi_{A} B\right)_{\epsilon}
\end{aligned}
$$

Constructing ρ from ρ_{ϵ}

Similar to the construction of κ from κ_{ϵ} we construct ρ from ρ_{ϵ} :

$$
\begin{aligned}
& / A^{\rrbracket} \times \mathbb{\pi ^ { * }} / A^{\rrbracket} \stackrel{\pi_{*}}{\longleftarrow} / A^{\rrbracket} \times \mathbb{\epsilon ^ { * }} / A \\
& \left(p^{0} \times 0\right)_{*} \downarrow \downarrow \underset{\vee}{p_{*}^{0}} \cong \underset{\downarrow}{\left(p^{0} \times 0\right)_{*}} \Downarrow \tau \quad p^{\prime} \quad p_{*} \\
& / X^{\mathbb{\unrhd}} \times \mathbb{\pi ^ { * }} / X^{\mathbb{\rrbracket}}{\overleftarrow{\pi_{*}}} / X^{\mathbb{\rrbracket}} \times \mathbb{\epsilon ^ { * }} / X
\end{aligned}
$$

Constructing ρ from ρ_{ϵ}

Similar to the commutativity of the square involving κ_{ϵ} and κ we show that the following square commutes:

$$
\begin{aligned}
& \Pi_{A^{1} \times 0} B^{0} \times 0 \xrightarrow{\rho}\left(\Pi_{A} B\right)^{0} \times 0 \\
& \left(p^{0} \times \mathrm{C}\right)_{*}(\delta \Rightarrow q) \downarrow \downarrow \downarrow^{\prime} \Rightarrow p_{*} q \\
& \Pi_{A^{1} \times 0}\left(B_{\epsilon}\right) \xrightarrow[\rho_{\epsilon}]{ }\left(\Pi_{A} B\right)_{\epsilon}
\end{aligned}
$$

Constructing ρ from ρ_{ϵ}

Similar to the commutativity of the square involving κ_{ϵ} and κ we show that the following square commutes:

$$
\begin{aligned}
& \Pi_{A^{0} \times \mathbb{1}} B^{\square} \times \mathbb{D} \xrightarrow{\rho}\left(\Pi_{A} B\right)^{0} \times \mathbb{0} \\
& \left(p^{0} \times \mathrm{C}\right) *(\delta \Rightarrow q) \downarrow \quad \downarrow^{\delta \Rightarrow p_{*} q} \\
& \Pi_{A^{1} \times 0}\left(B_{\epsilon}\right) \xrightarrow[\rho_{\epsilon}]{ }\left(\Pi_{A} B\right)_{\epsilon}
\end{aligned}
$$

That ρ is a retract of κ follows from the fact that ρ_{ϵ} is a retract of κ_{ϵ} and the iso 2-cells pasted to the left of κ_{ϵ} and ρ_{ϵ}, respectively, are pairwise inverses.

围 Carlo Angiuli，Guillaume Brunerie，Thierry Coquand，Robert Harper， Kuen－Bang Hou（Favonia），Daniel R．Licata
Syntax and models of Cartesian cubical type theory
Math．Struct．Comput．Sci．， 2021.
国 Steve Awodey
Cartesian cubical model categories
arXiv：2305．00893， 2023
违 Thierry Coquand
Variation on Cubical sets
https：／／www．cse．chalmers．se／coquand／diag．pdf， 2014
固 Nicola Gambino and Christian Sattler
The Frobenius condition，right properness，and uniform fibrations
J．Pure Appl．Algebra， 2017

围 Sina Hazratpour \＆Emily Riehl
A 2－Categorical Proof of Frobenius for Fibrations Defined From a Generic Point

Mathematical Structures in Computer Science， 2024
arXiv：2210．00078
圁 G．M．Kelly \＆Ross Street
Review of the elements of 2－categories
Category Seminar Proc．Sem．，Sydney， 1974
圊 Andrew W．Swan
Definable and Non－definable Notions of Structure
arXiv：2206．13643， 2022

