Structured Frobenius for Fibrations Defined from a Generic
Point

HoTT-UF 2024

Sina Hazratpour

j-w.w. Emily Riehl

April 2024



Frobenius condition

» The Frobenius condition is a property of weak factorization systems (WFS)
that requires pullback along maps in the right class to preserve maps in the

left class.



Frobenius condition

» The Frobenius condition is a property of weak factorization systems (WFS)
that requires pullback along maps in the right class to preserve maps in the
left class.

» In a locally cartesian closed category with a WFS:

Frobenius condition <= R-maps closed under pushforwards along R-maps.



Frobenius condition

» The Frobenius condition is a property of weak factorization systems (WFS)
that requires pullback along maps in the right class to preserve maps in the
left class.

» In a locally cartesian closed category with a WFS:

Frobenius condition <= R-maps closed under pushforwards along R-maps.

> In a full model category: Frobenius condition <= right properness.
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Frobenius condition & HOTT

» Interpretation of lN-types; instrumental in obtaining models of HOTT in
simplicial and cubical sets.
» In Voevodsky’s simplicial model of HOTT
» R-maps = Kan fibrations
» The Frobenius condition is justified by the non-constructive use of minimal
fibrations.
» In Cubical Type Theory, Coquand gave a constructive proof of the Frobenius
condition by reducing fibration structures to the more manageable

composition structures.
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Category-theoretic proofs of the Frobenius condition

» Previous work by Awodey and Gambino-Sattler on obtaining a categorical
proof which is more conceptual and less syntactical.

> We used 2-categorical methods to give a proof of a functorial Frobenius
condition.
» Our proof does not require connection structures on the interval object since we
work with the "unbiased" fibrations.
» We work in the more general setting of LCCCs.
» Equational approach based on mates from 2-category theory, instead of

reasoning by universal properties.



Setup

» A pointed LCCC (£,1: 1 = &)

> A category TFibcart — £2,,, of stably structured trivial fibrations satisfying
the axioms STF1 - STF3 in below.



Axioms STF1-STF3

The free retract category is defined by the following pushout of categories:
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And, the category of maps with a specified section is defined by the following

pullback of categories:
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Axioms STF1-STF3

STF1 Trivial fibrations have a

stable choice of section:

STF2 Trivial fibrations are stable
under pushforwards along

any map:

STF3 Trivial fibrations are closed

under retract:
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Fibrations from Trivial Fibrations

For the generic point §: 1 — l and a
map p: A — X, the Leibniz
exponential 6 = p is the gap map to
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Fibrations from Trivial Fibrations

For the generic point §: 1 — l and a
map p: A — X, the Leibniz
exponential 6 = p is the gap map to
the pullback. This defines a

cartesian functor § = (—): £2 — £2.

We define a category of stably Fibeart 5=(-) TFibeart
structured fibrations from the l . l

u u
category of stably structured trivial

2
fibrations: Ecart 5=(—) cart
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Functorial Structured Frobenius Theorem

Fibcart x ¢ Fibcart "D"> Fibcart —— TFibcart

3 2 2
Ecart n 5cart 5=(—) gcart

To obtain " we post-compose with the map ev,: TFibgart X c2 E2XR

cart

— TFibcart .



Functorial Structured Frobenius Theorem

Fibcart x ¢ Fibcart "D"> Fibcart —— TFibcart

3 N 2 2
5cart mn ’ gcart 5=(—) gcart
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Flbcart Xg Flbcart —_— gzart Xg Flbcart E— g
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Constructing the red arrow

0 = p.q is a retract of a pushforward of § = q:

(MaB)! x | — My B x 1 —2— (NMaB)! x |

5=>Px QJ J(p' x1).(6=q) pr*q

(MaB)e —— Maixi (Be) —— (MaB)e



Constructing the red arrow

0 = p.«q is a retract of a pushforward of § = q:

(MaB)! x | — My B x 1 —2 (MaB)! x |

5=>p qJ l(p' x1)«(6=Q) Jﬁp*q

(MaB). e My (Be) e (MaB).

€

This we show later using the calculus of mates from 2-category theory.
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Finishing the proof

» By (BC), the vertical morphisms and the canonical transformations x. and s

are stable under pullback.
» By (BC) + (STF1), p. and p are pullback stable.

» (STF2) provides a pullback stable trivial fibration structure on (p' x 1).(6 = q)

>
. . . 2XR evy .
F|bcart Xeg F|bcart ***** > TFleart chzart gcart — TF|bCart
idx uJ/ J/ Ju
2 ; 2xR evr 2
_— R
gcart ¢ Fibcart gcart 5cart

» Composing with (STF3) construct the desired lift Fibcart X ¢ Fibeart — TFibeart.



Proof of the Retract Diagram Using Mates



The Mate Correspondence

The mates correspondence gives an extended, double-categorical, version of
adjoint transposition: a suitably-oriented 2-cell in a square involving parallel left
adjoints is mates with another 2-cell in the corresponding square formed by their

right adjoints.

Ay c A-H.c C
Flova o U E ga s
B——D B B——D



Theorem (Kelly-Street)
Consider the pair of double categories Ladj and Radj whose:

» objects are categories,
» horizontal arrows are functors,

» vertical arrows are fully-specified adjunctions pointing in the direction of the
left adjoint, and
» squares of Ladj (resp. Radj) are natural transformations between the squares
of functors formed by the left (resp. right) adjoints.
Then
Ladj = Radj

which acts on squares by taking mates.




The basic 2-cells

From the counit 2-cells
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The basic 2-cells

From the counit 2-cells

NN AR

SIS B

/1 —= /1 /I — /I
we obtain the spans
X & X'xl 4> X

natural in X.
A xl I Al

i

X<l —— X!



Leibniz Exponential from the basic 2-cells

The component of the whiskered counit

/X T X x|

o we |

JX — /X x|l == /X' x|

atp: A— Xisthemap é = p: A x | — A..



Constructing .

Alxl —< 5 A

pal s

X'x1— X
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JA T — /A

ey e

/XIX|T>/X



Constructing .

JA x| << /A

2 XI)*T o Tp*

/X'xlﬁ/X



Constructing .

JA x| +<— /A

(plxl)*l M ke lp*

/X'><I<T/X



Constructing .

Alxl —5 A JA x| — /A JA x| +<— /A

plxll lp ~ (plxl)!l lp! ~ (plxl)*l T Ke lp*

X'xl— X /X'l —— /X /XIX|T/X



Constructing .

A xl —5 A JA x| — /A JA x| +<— /A
p'xll lp ~ (p'xl)!l lp! ~ (p'xl)*l T Ke lp*
X'xl— X /X'l —— /X /X'><I<T/X

The component of k. at g: B — Adefines a map «.: (MaB)e — M Be over
X' x 1.



Constructing .

So far,
(HAB)I x | |_|A|><|BI x|

§=ps ql l(p' x1)«(6=>q)

(MaB)e TR Maa(Be)



Constructing .

So far,
(MaB)' x 1 - My B x |

éﬁp*ql l(p'xl)*(bcn

(MaB)e —— Ma(Be)

Next, we find the left top arrow.



Constructing « from &,

JA x| < /A

\
P> ) Ke JP*
1

/X' —— /X



Constructing « from &,

JA T A A

|
p'{ = D R Jp*
1

IX' e X XL e /X



Constructing « from &,

T

JA X1 S /A

\
P'>xDs ) Ke lp*
1

/X' X1 —— /X



Constructing « from &,

JAV X T A T A A

\
(p'xl){ = p!l = PN A Ke Jp*
4

XU e X e XX e X

™

The component of the composite 2-cell at g: B — A defines a map

K (HAB)I x| — HA|X|(BI X |)

over X! x I.



Constructing « from &,

The component of the composite 2-cell at q: B — A defines a map
K (MaB) x 1= My (B x 1)

over X' x I.

T

JA X T A T A X X — /A

(P'Xl){ T K JP*

IXVT e X e XV /X



Constructing « from &,
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Constructing « from &,
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Constructing « from &,
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Constructing « from &,

T

B'x1/A' x1 «+ = BI/A « ™ B /A x|+ B/A



Constructing « from &,

B x1/A xl «+—"  B/A « ™ B /A x|+ B/A

(p'xl){

Mar (B x 1)/X' x|



Constructing « from &,

B/A

MNaB/X



Constructing « from &,

B/A

lp,ﬂ

(MaB)/ X' x | — NaB/X



Constructing « from &,

B/A

l”*

(MaB)'/ X" «——— (MaB)/X' x 1 e NaB/X



Constructing « from &,

B/A

Jp*

(MaB)' > 1/X" x 1 ¢—— (MaB)' /X" ——— (MaB)e/X' x| —— M4B/X

Tx



Constructing « from &,

We now have to verify that the square

(MaB)! x I —"= Nay B x|

6:»p*ql l(p'xl)*(fbcn

(MaB)e —— Ma(Be)

commutes.



Constructing « from &,

(HAB)I x|

5¢p*ql
(HAB)e e M XI(Be)

JA x| JA x| £ /A
(p'x1). L (P'xD<L R e
/X' x| /X'l /X
|

I v I

/X'XI?/X'ﬁ/X'xI%—*/X

(MaB)' x I —“ My, B x|

|E6=0)

nA'xI(Bé)
JA x| JA X1 /A
I ) v Il |
JA x| & JAV S JA x| /A
P'xn = pl = (P LPs
IXVx b /XD e /X - /X



Constructing « from &,

That reduces to asking for the equality of the pasted composites below:

JA x| JA x| JA x| JA x|
H frv H (p'xl)*l l(p'xl)*
JA X T JA T A = /X < /X' x|
(p'xl)*l o~ ;g = l(p'xl)* H v H

/X' 5 e—— /XD —— /X' x /X'><I<T/X'<T/X'><I




Constructing « from &,

That reduces to asking for the equality of the pasted composites below:

JA x| JA x| JA x| JA x|
H v H (p'xl)*l l(p'xl)*
JA X T JA T A = /X x /X' x|
(p'xl)*l o~ ;i'* o l(p'xl)* H v H

/X! x| p /X!

/X! x| /X|><|<?/XI<T/XI><|

T

We simplify this verification by taking vertical mates, then horizontal mates, and
then again the vertical mates of the two sides of the pasting equality (c.f.

functoriality of mating).



Constructing « from &,

Finally, we need to verify that the following pasting diagrams are equal to each
other.

*

JA 1 s JAY Ty Al JA x| — JAL T A X
| e | e o= e,
JA x| JA x| /X'l —— /X —— /X x|

ey | (1) | H

/X! x| /X! x| /X! x| /X! x|




Constructing « from &,

The pasting diagrams above are equal if and only if

JA s PN M JA ) T A P
| | I I
JA <1 —— /X! x| == /X' x1 JA! x |—/A'><|*>/X'><|

(P'x1), (p'x1),



Constructing « from &,

The pasting diagrams above are equal if and only if

Pl

Tl

JA s B JA X | JA /X!
| | e I | e e e
/A'xlm/X'xl:/X'xl /A'xl:/A'xlm/X'xl

Taking mates in the vertical direction reduces to a establishing a pasting equation

between the same identity 2-cells.



Constructing the retract map p.

Since p is a fibration, § = p has a section:




Constructing the retract map p.

A —=——— /A T A

/A LA =

o] = e = e = A /A
X! —— /X (plxu)ﬁ ~ Tp*

/X'xl:/X'xIT/X



Constructing the retract map p.

This gives rise to a pasting equation between the mates

JA ——— JA A

/A LA ~ ar |
(e*p)*l = Jp* = (ep- = JA" x| —— /A
/X! x 1 — /X (p'xl)*l K Jp*

/X'xl:/X'xIT/X



Constructing the retract map p.

/X 2 /A
= |
IX P A /A, iy
d - - o e |
/X' X1 e—— /X (€*p)s = JAXI e—— /A
(pIXI)*l Ttk lp*

/X'xl:/X'xI:/X'xHT/X



Constructing the retract map p.

The pasting equality above proves that p. is a retract of rep.

(MaB)' x | — Ma B x| --2 (MaB)! x |
=P+ Ql l(p' x1)«(6=q) l5=>l3*q

(MAB)e —— Maia(B) —5— (M4B):

\_//



Constructing p from p,

Similar to the construction of « from x. we construct p from p.:

Tx

JA x| = — JA < A X S /A
.| =B = e gr l”*

/X|X|<T/XI<?/XIX|<?/X



Constructing p from p,

Similar to the commutativity of the square involving . and x we show that the

following square commutes:
I_IAI><|BI x| L> (I_IAB)I x|

(p'x I)*(6:>q)l lé:w*q

Ma(Be) Qe (MaB)e



Constructing p from p,

Similar to the commutativity of the square involving . and x we show that the

following square commutes:

Ma B x 1 —2— (MaB)! x |

(1) (=) | |5=p-a

Maa(Be) ——5— (MaB).

That p is a retract of « follows from the fact that p. is a retract of x. and the iso

2-cells pasted to the left of k. and p., respectively, are pairwise inverses.
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