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Frobenius condition

I The Frobenius condition is a property of weak factorization systems (WFS)

that requires pullback along maps in the right class to preserve maps in the

left class.

I In a locally cartesian closed category with a WFS:

Frobenius condition ⇐⇒ R-maps closed under pushforwards along R-maps.

I In a full model category: Frobenius condition ⇐⇒ right properness.
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Frobenius condition & HoTT

I Interpretation of Π-types; instrumental in obtaining models of HoTT in

simplicial and cubical sets.

I In Voevodsky’s simplicial model of HoTT

I R-maps = Kan fibrations

I The Frobenius condition is justified by the non-constructive use of minimal

fibrations.

I In Cubical Type Theory, Coquand gave a constructive proof of the Frobenius

condition by reducing fibration structures to the more manageable

composition structures.
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Category-theoretic proofs of the Frobenius condition

I Previous work by Awodey and Gambino-Sattler on obtaining a categorical

proof which is more conceptual and less syntactical.

I We used 2-categorical methods to give a proof of a functorial Frobenius

condition.

I Our proof does not require connection structures on the interval object since we

work with the "unbiased" fibrations.

I We work in the more general setting of LCCCs.

I Equational approach based on mates from 2-category theory, instead of

reasoning by universal properties.
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Setup

I A pointed LCCC (E , I : 1→ E)

I A category TFibcart → E2
cart of stably structured trivial fibrations satisfying

the axioms STF1 - STF3 in below.



Axioms STF1-STF3

The free retract category is defined by the following pushout of categories:

2 1

3 R
d1

!

p
r

And, the category of maps with a specified section is defined by the following

pullback of categories:

ERcart ER

E2
cart E2

d0
y

d0



Axioms STF1-STF3

STF1 Trivial fibrations have a

stable choice of section:

STF2 Trivial fibrations are stable

under pushforwards along

any map:

STF3 Trivial fibrations are closed

under retract:

TFibcart ERcart

E2
cart

u

s

d0

TFibcart ×E E3
cart TFibcart ×E E2

cart

E4
cart E3

cart

u×id u×id

Π

TFibcart ×E2
cart
E2×R

cart TFibcart

E2×R
cart E2

cart

u×id

evr

u

evr



Fibrations from Trivial Fibrations

For the generic point δ : 1→ I and a

map p : A→ X , the Leibniz

exponential δ ⇒ p is the gap map to

the pullback. This defines a

cartesian functor δ ⇒ (−) : E2 → E2.

AI × I

Aε A

X I × I X

pI×I

δ⇒p

ε

y
p

ε

We define a category of stably

structured fibrations from the

category of stably structured trivial

fibrations:
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Functorial Structured Frobenius Theorem

Fibcart ×E Fibcart Fibcart
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Functorial Structured Frobenius Theorem

Fibcart ×E Fibcart Fibcart TFibcart

E3
cart E2

cart E2
cart

Π′

u×u

Π

u
y

u

Π δ⇒(−)

To obtain Π′ we post-compose with the map evr : TFibcart ×E2
cart
E2×R

cart → TFibcart.



Functorial Structured Frobenius Theorem

Fibcart ×E Fibcart Fibcart TFibcart

E3
cart E2

cart E2
cart

Π′

u×u

Π

u
y

u

Π δ⇒(−)

Fibcart ×E Fibcart E2
cart ×E Fibcart E2×R
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E3
cart E2

cart E2
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u×id ?

evr
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Constructing the red arrow

δ ⇒ p∗q is a retract of a pushforward of δ ⇒ q:

(ΠAB)I × I ΠAI×I BI × I (ΠAB)I × I

(ΠAB)ε ΠAI×I (Bε) (ΠAB)ε

κ

δ⇒p∗q (pI×I)∗(δ⇒q)

ρ

δ⇒p∗q

κε ρε



Constructing the red arrow

δ ⇒ p∗q is a retract of a pushforward of δ ⇒ q:

(ΠAB)I × I ΠAI×I BI × I (ΠAB)I × I

(ΠAB)ε ΠAI×I (Bε) (ΠAB)ε

κ

δ⇒p∗q (pI×I)∗(δ⇒q)

ρ

δ⇒p∗q

κε ρε

This we show later using the calculus of mates from 2-category theory.



Finishing the proof

I By (BC), the vertical morphisms and the canonical transformations κε and κ

are stable under pullback.

I By (BC) + (STF1), ρε and ρ are pullback stable.

I (STF2) provides a pullback stable trivial fibration structure on (pI × I)∗(δ ⇒ q)

I

Fibcart ×E Fibcart TFibcart ×E2
cart
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cart TFibcart

E2
cart ×E Fibcart E2×R

cart E2
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evr
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I Composing with (STF3) construct the desired lift Fibcart ×E Fibcart → TFibcart.
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Proof of the Retract Diagram Using Mates



The Mate Correspondence

The mates correspondence gives an extended, double-categorical, version of

adjoint transposition: a suitably-oriented 2-cell in a square involving parallel left

adjoints is mates with another 2-cell in the corresponding square formed by their

right adjoints.

A C A C C

B D B B D

H

F ⇓ α L 7→
⇓ ε

H

F ⇓ α L

K

U

K

R

⇓ ι



Theorem (Kelly-Street)
Consider the pair of double categories Ladj and Radj whose:

I objects are categories,

I horizontal arrows are functors,

I vertical arrows are fully-specified adjunctions pointing in the direction of the

left adjoint, and

I squares of Ladj (resp. Radj) are natural transformations between the squares

of functors formed by the left (resp. right) adjoints.

Then

Ladj ∼= Radj

which acts on squares by taking mates.



The basic 2-cells

From the counit 2-cells

/I /1

/1 /1

I!

⇓ πI∗

/1 /I

/I /I

I∗

⇓ νI∗
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The basic 2-cells

From the counit 2-cells

/I /1

/1 /1

I!

⇓ πI∗

/1 /I

/I /I

I∗

⇓ νI∗

we obtain the spans

X I X I × I Xπ ε

natural in X .
AI × I AI

X I × I X I

y
pI×I

π

p

π



Leibniz Exponential from the basic 2-cells

The component of the whiskered counit

/X I /X I × I

/X /X I × I /X I × I

π∗

⇓ ν
ε∗

π∗

at p : A→ X is the map δ ⇒ p : AI × I→ Aε.



Constructing κε

AI × I A

X I × I X

pI×I

ε

p

ε



Constructing κε
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Constructing κε
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Constructing κε

/AI × I /A

/X I × I /X

(pI×I)∗

ε∗

∼= p∗

ε∗



Constructing κε

/AI × I /A

/X I × I /X

(pI×I)∗

ε∗

⇑ κε p∗

ε∗



Constructing κε

AI × I A /AI × I /A /AI × I /A

X I × I X /X I × I /X /X I × I /X

pI×I

ε

p  (pI×I)!

ε!

p!
 (pI×I)∗

ε∗

⇑ κε p∗

ε ε! ε∗



Constructing κε

AI × I A /AI × I /A /AI × I /A

X I × I X /X I × I /X /X I × I /X

pI×I

ε

p  (pI×I)!

ε!

p!
 (pI×I)∗

ε∗

⇑ κε p∗

ε ε! ε∗

The component of κε at q : B → A defines a map κε : (ΠAB)ε → ΠAI×IBε over

X I × I.



Constructing κε

So far,
(ΠAB)I × I ΠAI×IBI × I

(ΠAB)ε ΠAI×I(Bε)
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δ⇒p∗q (pI×I)∗(δ⇒q)

κε



Constructing κε

So far,
(ΠAB)I × I ΠAI×IBI × I

(ΠAB)ε ΠAI×I(Bε)

κ

δ⇒p∗q (pI×I)∗(δ⇒q)

κε

Next, we find the left top arrow.



Constructing κ from κε

/AI × I /A

/X I × I /X

(pI×I)∗ ∼=

π∗

∼=
pI
∗

π∗

(pI×I)∗

ε∗

⇑ κε p∗

π∗ π∗ ε∗



Constructing κ from κε
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/X I /X I × I /X
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Constructing κ from κε

The component of the composite 2-cell at q : B → A defines a map

κ : (ΠAB)I × I→ ΠAI×I(B
I × I)

over X I × I.

/AI × I /AI /AI × I/X I × I /A

/X I × I /X I /X I × I /X

⇑ κ(pI×I)∗

π∗ π∗ ε∗

p∗

π∗ π∗ ε∗



Constructing κ from κε
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π∗ π∗ ε∗
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π∗ π∗ ε∗
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Constructing κ from κε
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Constructing κ from κε
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Constructing κ from κε
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Constructing κ from κε
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Constructing κ from κε

B/A

(ΠAB)I × I/X I × I (ΠAB)I/X I (ΠAB)ε/X I × I ΠAB/X

(pI×I)∗

π∗ π∗ ε∗

p∗

π∗ π∗ ε∗



Constructing κ from κε

We now have to verify that the square

(ΠAB)I × I ΠAI×IBI × I

(ΠAB)ε ΠAI×I(Bε)

κ

δ⇒p∗q (pI×I)∗(δ⇒q)

κε

commutes.



Constructing κ from κε

(ΠAB)I × I

(ΠAB)ε ΠAI×I(Bε)

δ⇒p∗q

κε

(ΠAB)I × I ΠAI×IBI × I

ΠAI×I(Bε)

κ

(pI×I)∗(δ⇒q)

/AI × I /AI × I /A

/X I × I /X I × I /X

/X I × I /X I /X I × I /X

(pI×I)∗ (pI×I)∗ ⇑ κε

ε∗
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ε∗

π∗ π∗ ε∗

/AI × I /AI × I /A

/AI × I /AI /AI × I /A

/X I × I /X I /X I × I /X
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(pI×I)∗ ∼= ∼=pI
∗

π∗ π∗

(pI×I)∗ ⇑ κ
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π∗ π∗ ε∗



Constructing κ from κε

That reduces to asking for the equality of the pasted composites below:

/AI × I /AI × I /AI × I /AI × I

/AI × I /AI /AI × I /X I × I /X I × I

/X I × I /X I /X I × I /X I × I /X I /X I × I

⇑ ν (pI×I)∗ (pI×I)∗

(pI×I)∗ ∼= ∼=pI
∗

π∗ π∗

(pI×I)∗

=

⇑ ν

π∗ π∗ π∗ π∗



Constructing κ from κε

That reduces to asking for the equality of the pasted composites below:

/AI × I /AI × I /AI × I /AI × I

/AI × I /AI /AI × I /X I × I /X I × I

/X I × I /X I /X I × I /X I × I /X I /X I × I

⇑ ν (pI×I)∗ (pI×I)∗

(pI×I)∗ ∼= ∼=pI
∗

π∗ π∗

(pI×I)∗

=

⇑ ν

π∗ π∗ π∗ π∗

We simplify this verification by taking vertical mates, then horizontal mates, and

then again the vertical mates of the two sides of the pasting equality (c.f.

functoriality of mating).



Constructing κ from κε

Finally, we need to verify that the following pasting diagrams are equal to each

other.

/AI × I /AI /AI × I

/AI × I /AI × I

/X I × I /X I × I

π! π∗

(pI×I)!

⇑ ι

(pI×I)!

/AI × I /AI /AI × I

/X I × I /X I /X I × I

/X I × I /X I × I

(pI×I)!
∼=pI

!

π! π∗

(pI×I)!

π! π∗

⇑ ι



Constructing κ from κε

The pasting diagrams above are equal if and only if

/AI × I /X I × I /X I /AI × I /AI /X I

/AI × I /X I × I /X I × I /AI × I /AI × I /X I × I

(pI×I)! π!

⇑ ι π∗

π!

⇑ ι π∗

pI
!

∼= π∗

(pI×I)! (pI×I)!



Constructing κ from κε

The pasting diagrams above are equal if and only if

/AI × I /X I × I /X I /AI × I /AI /X I

/AI × I /X I × I /X I × I /AI × I /AI × I /X I × I

(pI×I)! π!

⇑ ι π∗

π!

⇑ ι π∗

pI
!

∼= π∗

(pI×I)! (pI×I)!

Taking mates in the vertical direction reduces to a establishing a pasting equation

between the same identity 2-cells.



Constructing the retract map ρε

Since p is a fibration, δ ⇒ p has a section:

AI × I

Aε A

X I × I X

pI×I

δ⇒p

ε

σ

y
p

ε

/Aε /A

/AI × I /A

σ∗ ∼=

(p∗ε)∗

ε∗



Constructing the retract map ρε

/Aε /A

/X I × I /X

∼=

(p∗ε)∗

(ε∗p)∗

ε∗

p∗ =

/Aε /Aε /A

/AI × I /A

/X I × I /X I × I /X

∼=

(p∗ε)∗

∼=
∼=

σ∗

ε∗
(ε∗p)∗

(pI×I)∗

ε∗

p∗



Constructing the retract map ρε

This gives rise to a pasting equation between the mates

/Aε /A

/X I × I /X

∼=(ε∗p)∗

(p∗ε)∗

p∗

ε∗

=

/Aε /Aε /A

/AI × I /A

/X I × I /X I × I /X

(ε∗p)∗

σ∗ ⇑ τ

(p∗ε)∗

∼=

(pI×I)∗ ⇑ κ
ε∗

p∗

ε∗



Constructing the retract map ρε

/X /A

/X I × I /X

=ε∗

p∗

p∗

ε∗

=

/X /A

/Aε /Aε /A

/AI × I /A

/X I × I /X I × I /X I × I /X

ε∗

∼=

p∗

(ε∗p)∗

σ∗ ⇑ τ

(p∗ε)∗

∼=

(pI×I)∗ ⇑ κ
ε∗

p∗

ε∗



Constructing the retract map ρε

The pasting equality above proves that ρε is a retract of κep.

(ΠAB)I × I ΠAI×IBI × I (ΠAB)I × I

(ΠAB)ε ΠAI×I(Bε) (ΠAB)ε

κκ

δ⇒p∗q (pI×I)∗(δ⇒q)

ρ

δ⇒p∗q

κε ρε



Constructing ρ from ρε

Similar to the construction of κ from κε we construct ρ from ρε:

/AI × I /AI /AI × I /A

/X I × I /X I /X I × I /X

(pI×I)∗ ∼= ∼=pI
∗

π∗ π∗

(pI×I)∗ ⇓ τ

ε∗

p∗

π∗ π∗ ε∗



Constructing ρ from ρε

Similar to the commutativity of the square involving κε and κ we show that the

following square commutes:

ΠAI×IBI × I (ΠAB)I × I

ΠAI×I(Bε) (ΠAB)ε

(pI×I)∗(δ⇒q)

ρ

δ⇒p∗q

ρε



Constructing ρ from ρε

Similar to the commutativity of the square involving κε and κ we show that the

following square commutes:

ΠAI×IBI × I (ΠAB)I × I

ΠAI×I(Bε) (ΠAB)ε

(pI×I)∗(δ⇒q)

ρ

δ⇒p∗q

ρε

That ρ is a retract of κ follows from the fact that ρε is a retract of κε and the iso

2-cells pasted to the left of κε and ρε, respectively, are pairwise inverses.
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