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Generalized Algebraic Theories



Idea: Generalized Algebraic Theories (GATs) = Algebra + Type Dependency

Example: The GAT TGph of graphs

⊢ O
x y : O ⊢ A(x , y)

Example: The GAT TCat of categories

⊢ O
x y : O ⊢ A(x , y)
x : O ⊢ id(x) : A(x , x)

x y z : O , f : A(x , y) , g : A(y , z) ⊢ g◦f : A(x , z)
x y : O , f : A(x , y) ⊢ id(y)◦f = f
x y : O , f : A(x , y) ⊢ f ◦id(x) = f

w x y z : O , e : A(w , x) , f : A(x , y) , g : A(y , z) ⊢ (g◦f )◦e = g◦(f ◦e)

Formally, GATs are given by a ordered list of axioms, of one of the followoing forms

• declarations of (possibly dependent) sorts

• declarations of operations

• sort equations (not present above)

• term equations



The syntactic category

The syntactic category C of a GAT T[C] is given as follows:

• objects are contexts

• morphisms are substitutions

Example: In C[TCat] we have morphisms

• (x y z : O , f : A(x , y) , g : A(y , z))
(x , z , g◦f )−−−−−−−−−−→ (x z : O , h : A(x , z))

• (x y z : O , f : A(x , y) , g : A(y , z))
(x , y , f )−−−−−−−−−→ (x y : O , f : A(x , y))

Observation: the second morphism is a projection, which play a special role: the syntactic category
C[T] of a GAT is (almost) a clan!



Clans

Definition

A clan is a small category T with terminal object 1, equipped with a class T† ⊆ mor(T ) of morphisms
– called display maps and written _ – such that

1. pullbacks of display maps along all maps exist and are display maps
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2. display maps are closed under composition, and

3. isomorphisms and terminal projections Γ _ 1 are display maps.

• The syntactic category C[T] of a GAT is a clan, where the class of display maps is generated by
projections and isos.

• The clan structure on the syntactic category gives us a particularly simple way to define models:

Definition

A model of a clan T is a functor A : T → Set which preserves 1 and pullbacks of display-maps.

We write Mod(T ) for the full subcategory of [T ,Set] on models.



Functoriality of models

Definition

A clan morphism ϕ : S → T is a functor which preserves 1, display maps, and pullbacks of display
maps.

• For every clan morphism ϕ : S → T , the precomposition functor ϕ∗ : [T ,Set] → [S,Set]
restricts to models:

Mod(T ) Mod(S)

[T ,Set] [S,Set]

ϕ•

ϕ∗

Mod(T ) Mod(S)

[T ,Set] [S,Set]

⇒

ϕ•

ϕ!

• We have left adjoints ϕ! ⊣ ϕ∗ and ϕ• ⊣ ϕ•, but ϕ• need not be the restriction of the ϕ!! (e.g.
when the same category has two different clan structures)

• This talk is about when the adjunction ϕ• ⊣ ϕ• is monadic, i.e. Mod(T ) is the category of
algebras for the monad Tϕ = ϕ• ◦ ϕ• : Mod(S) → Mod(S).



Simply typed monadicity



Single-sorted algebraic theories

• Single-sorted algebraic theories (SSATs) (a.k.a. Lawvere theories) are theories like the
theory of monoids:

⊢ M
x y : M ⊢ x ·y : M

⊢ e : M
x : M ⊢ x ·e = e·x = x : M

x y z : M ⊢ (x ·y)·z = x ·(y ·z) : M

• Such theories can be viewed as extensions of the theory with only one sort symbol

{
⊢ M

}
↪→


⊢ M

x y : M ⊢ x ·y : M
⊢ e : M

x : M ⊢ x ·e = e·x = x : M
x y z : M ⊢ (x ·y)·z = x ·(y ·z) : M


and the induced adjunction is monadic.

• This is the well-known fact that SSATs correspond to finitary monads on Set.

• More generally, models of algebraic theories with a set I of sorts are monadic over SetI .



Cancellation

More generally, extensions of algebraic theories, such as the extension of the theory of monoids by
commutativity


⊢ M

x y : M ⊢ x ·y : M
⊢ e : M

x : M ⊢ x ·e = e·x = x : M
x y z : M ⊢ (x ·y)·z = x ·(y ·z) : M

 ↪→



⊢ M
x y : M ⊢ x ·y : M

⊢ e : M
x : M ⊢ x ·e = e·x = x : M

x y z : M ⊢ (x ·y)·z = x ·(y ·z) : M
x y : M ⊢ x + y = y + x


,

of the theory of Rings over the theory of abelian groups, are monadic, in the sense that the forgetful
functors

CMon → Mon and Ring → Ab

are monadic. This is because of the following cancellation property for monadic functors.

Theorem

Given composable functors C U−→ B U′

−→ A, if U ′ and U ′ ◦ U are monadic, and U has a left adjoint,
then U is monadic.



Monadic Extensions of GATs



Failure of composability I
Things are more complicated in the generalized algebraic case:

The forgetful functors
Cat → Gph and Gph → Set2

from categories to graphs, and from graphs to pairs of sets (vertices and edges) are monadic, but
their composite is not.

This can be explained by saying that the ‘natural’ syntactic representations by extensions of theories
represent Gph differently:

{
⊢ O
⊢ A

}
↪→


⊢ O
⊢ A

x : A ⊢ s(x) : O
x : A ⊢ t(x) : O


{

⊢ O
x y : O ⊢ A(x , y)

}
↪→


⊢ O

x y : O ⊢ A(x , y)
x : O ⊢ id(x) : A(x , x)

x y z : O , f : A(x , y) , g : A(y , z) ⊢ g◦f : A(x , z)
. . . ⊢ . . .


Graphs are presented non-dependently over Set2 (with two sorts O and A and source and target
maps), but the theory of categories is an extension of the theory of graphs with a dependent sort of
arrows.



Failure of composability II

Another way monadic extensions can fail to compose is when the first extension appears in the
context of the second extension.

This can happen in GATs even without adding new sort symbols because of dependency and
substitution.

 ⊢ A
⊢ B

y : B ⊢ C (x)

 ↪→


⊢ A
⊢ B

y : B ⊢ C (x)
⊢ b : B

 ↪→


⊢ A
⊢ B

y : B ⊢ C (x)
⊢ b : B

z : C (b) ⊢ f (z) : A


In the following we introduce a class of composable monadic clan extensions, where this kind of thing
can’t happen.



Composable monadic clan extensions



The monadicity criterion

Theorem

A clan morphism ϕ : S → T is monadic whenever ϕ• is conservative and reflects algebras in the
sense that

Mod(T ) Mod(S)

[T ,Set] [S,Set]

ϕ•

ϕ∗

is a (bi)pullback in Cat.

Proof.

By Beck’s theorem it’s enough to show that ϕ• preserves ϕ•-split coequalizers.

Consider a ϕ•-split parallel pair f , g : A ⇒ B in Mod(T ), let A ⇒ B
c
↠ C be its coequalizer in

[T ,Set], and let ϕ•A ⇒ ϕ•B
d
↠ D be the split coequalizer in Mod(S). As a split coequalizer the

latter is absolute, and is therefore preserved by Mod(S) ↪→ [S,Set]. Since ϕ∗ preserves colimits, we
have ϕ∗C ∼= D. It follows that C is a model since the square is a bipullback.



Examples

• The extension TGph ↪→ TCat fulfils the criterion: a functor C[TCat] → Set is a model whenever its
restriction to C[TGph] is a model.

•

 ⊢ A
⊢ B

y : B ⊢ C (x)

 ↪→


⊢ A
⊢ B

y : B ⊢ C (x)
⊢ b : B

 does not fulfil the criterion!

• What about T2-Gph ↪→ T2-Cat?



Monads with arities

Definition

Given a monad T : X → X , a small full dense subcategory C ⊆ X is said to be an arity for T if for

every X ∈ X , the canonical colimit X = col((C/X ) → C ↪→ X ) is preserved by X T−→ X ↪→ Ĉ.

The following can be viewed as a kind of inverse to our monadicity theorem.

Theorem (Nerve theorem12)

If C is an arity for a monad T : X → X , we have a (bi)pullback

XT X

ĈT Ĉ

where XT is the category of T -algebras, and CT is the relative Kleisli category.

2 M. Weber. “Familial 2-functors and parametric right adjoints”. English. In: Theory and Applications of Categories
(2007), Theorem 4.10.

2 C. Berger, P.A. Melliès, and M. Weber. “Monads with arities and their associated theories”. In: Journal of Pure
and Applied Algebra (2012), Theorem 1.10.



Segal condition

Taking X = Gph and C ⊆ X to be the full subcategory of finite non-empty chains (• → • · · · → •)
the nerve theorem recovers the Segal condition characterizing categories among simplicial sets.

Cat Gph

ĈT Ĉ

The clan morphism C[TGph] → C[TCat] gives rise to a similar square

Cat Gph

[C[TCat],Set] [C[TGph],Set]

wit larger presheaf categories on the bottom: chains, we use arbitrary finite graphs.



Thank you for your attention!


