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Ordinals in homotopy type theory
▶ In the HoTT book, an ordinal is defined as a type X with a

prop-valued binary relation ≺ that is transitive, extensional
and wellfounded.

▶ Extensionality means that we have

x = y ⇐⇒ ∀(u : X ).(u ≺ x ⇐⇒ u ≺ y).

It follows that X is an hset.

▶ Wellfoundedness is defined in terms of accessibility, but is
equivalent to the assertion that for every P : X → U , we have
Π(x : X ).P(x) as soon as
Π(x : X ).(Π(y : X ).(y ≺ x → P(y))) → P(x).

Many other more specialised (and well behaved) notions of ordinals
[Martin-Löf 1970; Taylor 1996; Coquand, Lombardi and Neuwirth
2023, ...] , but here we focus on the most general notion.
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The ordinal of ordinals

The type of (small) ordinals Ord can itself be given the structure
of a (large) ordinal by defining

α < β :≡ Σ(b : β).
(
α = (Σ(x : β).x ≺ b)

)
.

Similarly, we define α ≤ β if “α embeds into β without gaps”:

α ≤ β :≡ Σ(f : α
o.p.−−→ β).

(
y ≺ f x → Σ(x0 : α).(x0 ≺ x) × (y = f x0)

)
.

Ord is closed under suprema of arbitrary (small) families of ordinals
sup : (I → Ord) → Ord.
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Ordinal arithmetic

α + 0 = α

α + (β + 1) = (α + β) + 1
α + sup γi = sup(α + γi) (if index set I inhabited)

α × 0 = 0
α × (β + 1) = (α × β) + α

α × sup γi = sup(α × γi)

α0 = 1
αβ+1 = αβ × α

αsup γi = sup(αγi ) (if I inhabited, and α ̸= 0)

0β = 0 (if β ̸= 0)

Not a definition, constructively! But a good specification.
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Addition and multiplication

For addition and multiplication, there are well known explicit
constructions:

⟨α + β⟩ :≡ ⟨α⟩ + ⟨β⟩

with inl a ≺ inr b, and

⟨α × β⟩ :≡ ⟨α⟩ × ⟨β⟩

ordered reverse lexicographically:

(a, b) ≺ (a′, b′) :≡
(
b ≺ b′) +

(
(b = b′) × (a ≺ a′)

)
.

Theorem. The operations α + β and α × β satisfy the
specifications for addition and multiplication, respectively.
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Left division

We can also prove other properties, for example:

Theorem. (dJKNFX) If α > 0 and α × β = α × γ, then β = γ.

In contrast, Swan [2018] has shown that already

2 × B = 2 × C =⇒ B = C

is not constructively provable for sets B and C .

This gives a roundabout proof that not every set can be
wellordered, constructively.
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What about exponentiation?
Surprisingly, there is no nice “geometric” construction of ordinal
exponentiation.

Sierpiński [1958] constructs, for α with a least element ⊥ : α, the
exponential αβ as

Σ(f : β → α). supp(f ) finite

where supp(f ) :≡ Σ(x : β).(f x > ⊥).

The order is defined by

f ≺ g :≡ f (b∗) ≺α g(b∗),

where b∗ is the largest element x such that f (x) ̸= g(x) — such
b∗ exists since by the finite support assumption.

This is not nice, constructively!
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Can we do better?
Assume α has a detachable least element, i.e., α = 1 + γ.

Examples. ω = 1 + ω, and 42 = 1 + 41.

We can try to make Sierpiński’s construction more intensional.

Definition. For ordinals γ and β, let

[1 + γ ]β :≡ Σ(xs : List(γ × β)). (map snd xs) decreasing.

▶ [1 + γ ]β represents a function β → (1 + γ) as a list of
output-input pairs; elements not in the list are sent to inl ⋆.

▶ Being strictly decreasing in the second component ensures
that each input has at most one output.

▶ It also ensures that each “function” has at most one
representation.

8/12



Can we do better?
Assume α has a detachable least element, i.e., α = 1 + γ.

Examples. ω = 1 + ω, and 42 = 1 + 41.

We can try to make Sierpiński’s construction more intensional.

Definition. For ordinals γ and β, let

[1 + γ ]β :≡ Σ(xs : List(γ × β)). (map snd xs) decreasing.

▶ [1 + γ ]β represents a function β → (1 + γ) as a list of
output-input pairs; elements not in the list are sent to inl ⋆.

▶ Being strictly decreasing in the second component ensures
that each input has at most one output.

▶ It also ensures that each “function” has at most one
representation.

8/12



[1 + γ ]β is an ordinal

We can give [1 + γ ]β an order by inheriting the (ordinary)
lexicographic order on List(γ × β).

Theorem. (dJKNFX) [1 + γ ]β is an ordinal if γ and β are ordinals.

Remark. In general, the lexicographic order on List(α) is not
wellfounded, but it is for decreasing lists.
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[1 + γ ]β satisfies the specification

Theorem. (dJKNFX) [1 + γ ]β satisfies the specification for the
exponential (1 + γ)β.

Proof sketch.
▶ [1 + γ ]0 = List(γ × 0) = 1
▶ A snd-decreasing list over γ × (β + 1) either starts with an

element (γ, inr ⋆), or it is snd-decreasing over γ × β. Hence

[1 + γ ]β+1 = [1 + γ ]β × (1 + γ)

▶ For [1 + γ ]sup γi , being decreasing in the second component is
crucial.
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Ordinal exponentiation, in general?
Theorem. λβ.(β = 0) satisfies the specification for the
exponential 0β.

Can we define αβ for arbitrary α, constructively?

Theorem. (dJKNFX) There is exp : Ord → Ord → Ord satisfying
the specification for ordinal exponentiation if and only if Excluded
Middle holds.

Proof. (⇐) Use EM to decide between 0β and (1 + γ)β.
(⇒) If such an exp exists, it is monotone, since it is continuous.
Let P : Prop be given. We have

1 = exp (P + 1) 0 ≤ exp (P + 1) 1 = P + 1

and P or ¬P holds depending on if ⋆ : 1 hits inl p or inr ⋆ for
f : 1 → P + 1.
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Summary

Ordinals are closed under well behaved addition and multiplication.

New: However, a fully general exponentiation operation is possible
if and only if Excluded Middle holds.

The best we can do is (1 + γ)β and 0β separately.

Full Agda formalisation.
Building on Escardó’s TypeTopology.
https://github.com/fredrikNordvallForsberg/
TypeTopology/blob/exponentiation/source/Ordinals/
Exponentiation.lagda
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