Ordinal exponentiation in homotopy type theory
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Ordinals in homotopy type theory

» In the HoTT book, an ordinal is defined as a type X with a
prop-valued binary relation < that is transitive, extensional
and wellfounded.

> Extensionality means that we have
x=y <= Y(u: X).(u=<x <= u=<y).

It follows that X is an hset.

» Wellfoundedness is defined in terms of accessibility, but is
equivalent to the assertion that for every P : X — U, we have
M(x : X).P(x) as soon as
MN(x: X).(M(y : X).(y < x = P(y))) = P(x).

Many other more specialised (and well behaved) notions of ordinals

, but here we focus on the most general notion.



The ordinal of ordinals

The type of (small) ordinals Ord can itself be given the structure
of a (large) ordinal by defining

a<pB=%X(b:p).(a=(X(x:B)x=<b)).
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The ordinal of ordinals

The type of (small) ordinals Ord can itself be given the structure
of a (large) ordinal by defining

a<pB=%X(b:p).(a=(X(x:B)x=<b)).

Similarly, we define o@ < 3 if "av embeds into § without gaps”:

a<B=X(f:aZ2B).(y<fx—= XL(x:a)(x<x)x(y="Ffx)).

Ord is closed under suprema of arbitrary (small) families of ordinals
sup : (/ = Ord) — Ord.



Ordinal arithmetic

a+ 0=«
a+(B+1)=(a+p8)+1
o+ supy; = sup(a + ;)

ax0=0
ax(f+1)=(axp)+a

a X supy; = sup(ar X ;)

a® =1

(Xﬂ—i_l:(){BX(X

(if index set [ inhabited)

(if / inhabited, and a # 0)
(if 3 # 0)

Not a definition, constructively! But a good specification.



Addition and multiplication

For addition and multiplication, there are well known explicit

constructions:

(@) +(B)

{a+p):

with inl a < inr b, and

{ax B) = (a) x (§)

ordered reverse lexicographically:

(a,b) < (&, b)=(b=b)+((b="b)x(a=<a)).

Theorem. The operations o + § and « x 3 satisfy the
specifications for addition and multiplication, respectively.



Left division

We can also prove other properties, for example:

Theorem. (dJKNFX) If @ > 0 and a x f = «a x v, then = 7.
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Left division

We can also prove other properties, for example:

Theorem. (dJKNFX) If & > 0 and a x =« x 7, then § = 7.

In contrast, has shown that already
2xB=2xC = B=C

is not constructively provable for sets B and C.

This gives a roundabout proof that not every set can be
wellordered, constructively.
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What about exponentiation?

Surprisingly, there is no nice “geometric” construction of ordinal
exponentiation.

constructs, for o with a least element L : «, the
exponential o’ as

Y(f : B — «).supp(f) finite
where supp(f) = X(x: 5).(Fx > L).
The order is defined by
f <g:=1f(b") <a g(b%),

where b* is the largest element x such that f(x) # g(x) — such
b* exists since by the finite support assumption.

This is not nice, constructively!
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Can we do better?
Assume « has a detachable least element, i.e., « =1+ 7.
Examples. w =1+ w, and 42 =1+ 41.
We can try to make Sierpinski’s construction more intensional.
Definition. For ordinals v and S, let

[1+ ~]° = Z(xs : List(y x (). (map snd xs) decreasing.

» [1+4 ~]” represents a function 3 — (1 + ) as a list of
output-input pairs; elements not in the list are sent to inl *.

» Being strictly decreasing in the second component ensures
that each input has at most one output.

» [t also ensures that each “function” has at most one
representation.



[1+ ~]” is an ordinal

We can give [1 + ~v]? an order by inheriting the (ordinary)
lexicographic order on List(y x /3).

Theorem. (dJKNFX) [1L+ ~]” is an ordinal if v and 3 are ordinals.

Remark. In general, the lexicographic order on List(«) is not
wellfounded, but it is for decreasing lists.
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exponential (1 +7)".
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[1+ ~]” satisfies the specification

Theorem. (dJKNFX) [1 + ~]” satisfies the specification for the
exponential (1 +7)".

Proof sketch.
> [1+4 7] = List(y x 0) =1

» A snd-decreasing list over v x (/3 + 1) either starts with an
element (v, inr x), or it is snd-decreasing over v x /3. Hence

1+ 7] =1+ 7] x (1+7)

» For [1 + ~]*“P7i, being decreasing in the second component is
crucial.
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Ordinal exponentiation, in general?

Theorem. \(.(f = 0) satisfies the specification for the
exponential 07

Can we define o for arbitrary «, constructively?

Theorem. (dJKNFX) There is exp : Ord — Ord — Ord satisfying
the specification for ordinal exponentiation if and only if Excluded
Middle holds.

Proof. (<) Use EM to decide between 07 and (1 4 7)”.
(=) If such an exp exists, it is monotone, since it is continuous.
Let P : Prop be given. We have

l=exp(P+1)0<exp(P+1)1=P+1

and P or =P holds depending on if x : 1 hits inl p or inr x for
f:1— P+1.



Summary

Ordinals are closed under well behaved addition and multiplication.

New: However, a fully general exponentiation operation is possible
if and only if Excluded Middle holds.

The best we can do is (1 + v)? and 07 separately.

 Full Agda formalisation.
Building on 's TypeTopology.
https://github.com/fredrikNordvallForsberg/
TypeTopology/blob/exponentiation/source/0Ordinals/
Exponentiation.lagda
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