Ordinal exponentiation in homotopy type theory

Tom de Jong ${ }^{1} \quad$ Nicolai Kraus ${ }^{1}$
Fredrik Nordvall Forsberg ${ }^{2}$ Chuangjie Xu^{3}
${ }^{1}$ University of Nottingham, UK
${ }^{2}$ University of Strathclyde, UK
${ }^{3}$ SonarSource GmbH, Germany

Workshop on
Homotopy Type Theory/Univalent Foundations (HoTT/UF)
Leuven, 2 April 2024

Ordinals in homotopy type theory

- In the HoTT book, an ordinal is defined as a type X with a prop-valued binary relation \prec that is transitive, extensional and wellfounded.
- Extensionality means that we have

$$
x=y \Longleftrightarrow \forall(u: X) .(u \prec x \Longleftrightarrow u \prec y) .
$$

It follows that X is an hset.

- Wellfoundedness is defined in terms of accessibility, but is equivalent to the assertion that for every $P: X \rightarrow \mathcal{U}$, we have $\Pi(x: X) . P(x)$ as soon as $\Pi(x: X) .(\Pi(y: X) .(y \prec x \rightarrow P(y))) \rightarrow P(x)$.

Many other more specialised (and well behaved) notions of ordinals [Martin-Löf 1970; Taylor 1996; Coquand, Lombardi and Neuwirth $2023, \ldots]$, but here we focus on the most general notion.

The ordinal of ordinals

The type of (small) ordinals Ord can itself be given the structure of a (large) ordinal by defining

$$
\alpha<\beta: \equiv \Sigma(b: \beta) \cdot(\alpha=(\Sigma(x: \beta) \cdot x \prec b)) .
$$

The ordinal of ordinals

The type of (small) ordinals Ord can itself be given the structure of a (large) ordinal by defining

$$
\alpha<\beta: \equiv \Sigma(b: \beta) \cdot(\alpha=(\Sigma(x: \beta) \cdot x \prec b)) .
$$

Similarly, we define $\alpha \leq \beta$ if " α embeds into β without gaps":
$\alpha \leq \beta: \equiv \Sigma(f: \alpha \xrightarrow{\text { o.p. }} \beta) .\left(y \prec f x \rightarrow \Sigma\left(x_{0}: \alpha\right) .\left(x_{0} \prec x\right) \times\left(y=f x_{0}\right)\right)$.

The ordinal of ordinals

The type of (small) ordinals Ord can itself be given the structure of a (large) ordinal by defining

$$
\alpha<\beta: \equiv \Sigma(b: \beta) \cdot(\alpha=(\Sigma(x: \beta) \cdot x \prec b)) .
$$

Similarly, we define $\alpha \leq \beta$ if " α embeds into β without gaps":
$\alpha \leq \beta: \equiv \Sigma(f: \alpha \xrightarrow{\text { o.p. }} \beta) .\left(y \prec f x \rightarrow \Sigma\left(x_{0}: \alpha\right) .\left(x_{0} \prec x\right) \times\left(y=f x_{0}\right)\right)$.

Ord is closed under suprema of arbitrary (small) families of ordinals sup : $(I \rightarrow$ Ord $) \rightarrow$ Ord.

Ordinal arithmetic

$$
\begin{array}{rlrl}
\alpha+0 & =\alpha & \\
\alpha+(\beta+1) & =(\alpha+\beta)+1 & & \\
\alpha+\sup \gamma_{i} & =\sup \left(\alpha+\gamma_{i}\right) & & \text { (if index set } / \text { inhabited) } \\
\alpha \times 0 & =0 & & \\
\alpha \times(\beta+1) & =(\alpha \times \beta)+\alpha & & \\
\alpha \times \sup \gamma_{i} & =\sup \left(\alpha \times \gamma_{i}\right) & & \\
\alpha^{0} & =1 & & \\
\alpha^{\beta+1} & =\alpha^{\beta} \times \alpha & & \\
\alpha^{\sup \gamma_{i}} & =\sup \left(\alpha^{\gamma_{i}}\right) & \text { (if } / \text { inhabited, and } \alpha \neq 0) \\
0^{\beta} & =0 & & (\text { if } \beta \neq 0)
\end{array}
$$

Not a definition, constructively! But a good specification.

Addition and multiplication

For addition and multiplication, there are well known explicit constructions:

$$
\langle\alpha+\beta\rangle: \equiv\langle\alpha\rangle+\langle\beta\rangle
$$

with inl $a \prec \operatorname{inr} b$, and

$$
\langle\alpha \times \beta\rangle: \equiv\langle\alpha\rangle \times\langle\beta\rangle
$$

ordered reverse lexicographically:

$$
(a, b) \prec\left(a^{\prime}, b^{\prime}\right): \equiv\left(b \prec b^{\prime}\right)+\left(\left(b=b^{\prime}\right) \times\left(a \prec a^{\prime}\right)\right) .
$$

Theorem. The operations $\alpha+\beta$ and $\alpha \times \beta$ satisfy the specifications for addition and multiplication, respectively.

Left division

We can also prove other properties, for example:
Theorem. (dJKNFX) If $\alpha>0$ and $\alpha \times \beta=\alpha \times \gamma$, then $\beta=\gamma$.

Left division

We can also prove other properties, for example:
Theorem. (dJKNFX) If $\alpha>0$ and $\alpha \times \beta=\alpha \times \gamma$, then $\beta=\gamma$.
In contrast, Swan [2018] has shown that already

$$
2 \times B=2 \times C \Longrightarrow B=C
$$

is not constructively provable for sets B and C.
This gives a roundabout proof that not every set can be wellordered, constructively.

What about exponentiation?

Surprisingly, there is no nice "geometric" construction of ordinal exponentiation.

What about exponentiation?

Surprisingly, there is no nice "geometric" construction of ordinal exponentiation.

Sierpiński [1958] constructs, for α with a least element $\perp: \alpha$, the exponential α^{β} as

$$
\Sigma(f: \beta \rightarrow \alpha) \cdot \operatorname{supp}(f) \text { finite }
$$

where $\operatorname{supp}(f): \equiv \Sigma(x: \beta) .(f x>\perp)$.

What about exponentiation?

Surprisingly, there is no nice "geometric" construction of ordinal exponentiation.

Sierpiński [1958] constructs, for α with a least element \perp : α, the exponential α^{β} as

$$
\Sigma(f: \beta \rightarrow \alpha) \cdot \operatorname{supp}(f) \text { finite }
$$

where $\operatorname{supp}(f): \equiv \Sigma(x: \beta) .(f x>\perp)$.
The order is defined by

$$
f \prec g: \equiv f\left(b^{*}\right) \prec_{\alpha} g\left(b^{*}\right),
$$

where b^{*} is the largest element x such that $f(x) \neq g(x)$ - such b^{*} exists since by the finite support assumption.

This is not nice, constructively!

Can we do better?

Assume α has a detachable least element, i.e., $\alpha=1+\gamma$.
Examples. $\omega=1+\omega$, and $42=1+41$.

Can we do better?

Assume α has a detachable least element, i.e., $\alpha=1+\gamma$.
Examples. $\omega=1+\omega$, and $42=1+41$.
We can try to make Sierpiński's construction more intensional.
Definition. For ordinals γ and β, let

$$
[1+\gamma]^{\beta}: \equiv \Sigma(x s: \operatorname{List}(\gamma \times \beta)) \cdot(\text { map snd } x s) \text { decreasing. }
$$

- $[1+\gamma]^{\beta}$ represents a function $\beta \rightarrow(1+\gamma)$ as a list of output-input pairs; elements not in the list are sent to inl \star.
- Being strictly decreasing in the second component ensures that each input has at most one output.
- It also ensures that each "function" has at most one representation.

$[1+\gamma]^{\beta}$ is an ordinal

We can give $[1+\gamma]^{\beta}$ an order by inheriting the (ordinary) lexicographic order on $\operatorname{List}(\gamma \times \beta)$.

Theorem. (dJKNFX) $[1+\gamma]^{\beta}$ is an ordinal if γ and β are ordinals.
Remark. In general, the lexicographic order on List (α) is not wellfounded, but it is for decreasing lists.

$[1+\gamma]^{\beta}$ satisfies the specification

Theorem. (dJKNFX) $[1+\gamma]^{\beta}$ satisfies the specification for the exponential $(1+\gamma)^{\beta}$.

$[1+\gamma]^{\beta}$ satisfies the specification

Theorem. (dJKNFX) $[1+\gamma]^{\beta}$ satisfies the specification for the exponential $(1+\gamma)^{\beta}$.

Proof sketch.

$[1+\gamma]^{\beta}$ satisfies the specification

Theorem. (dJKNFX) $[1+\gamma]^{\beta}$ satisfies the specification for the exponential $(1+\gamma)^{\beta}$.

Proof sketch.

- $[1+\gamma]^{0}=\operatorname{List}(\gamma \times 0)=1$

$[1+\gamma]^{\beta}$ satisfies the specification

Theorem. (dJKNFX) $[1+\gamma]^{\beta}$ satisfies the specification for the exponential $(1+\gamma)^{\beta}$.

Proof sketch.

- $[1+\gamma]^{0}=\operatorname{List}(\gamma \times 0)=1$
- A snd-decreasing list over $\gamma \times(\beta+1)$ either starts with an element (γ, inr \star), or it is snd-decreasing over $\gamma \times \beta$. Hence

$$
[1+\gamma]^{\beta+1}=[1+\gamma]^{\beta} \times(1+\gamma)
$$

$[1+\gamma]^{\beta}$ satisfies the specification

Theorem. (dJKNFX) $[1+\gamma]^{\beta}$ satisfies the specification for the exponential $(1+\gamma)^{\beta}$.

Proof sketch.

- $[1+\gamma]^{0}=\operatorname{List}(\gamma \times 0)=1$
- A snd-decreasing list over $\gamma \times(\beta+1)$ either starts with an element (γ, inr \star), or it is snd-decreasing over $\gamma \times \beta$. Hence

$$
[1+\gamma]^{\beta+1}=[1+\gamma]^{\beta} \times(1+\gamma)
$$

- For $[1+\gamma]^{\text {sup } \gamma_{i}}$, being decreasing in the second component is crucial.

Ordinal exponentiation, in general?

Theorem. $\lambda \beta .(\beta=0)$ satisfies the specification for the exponential 0^{β}.

Can we define α^{β} for arbitrary α, constructively?

Ordinal exponentiation, in general?

Theorem. $\lambda \beta .(\beta=0)$ satisfies the specification for the exponential 0^{β}.

Can we define α^{β} for arbitrary α, constructively?
Theorem. (dJKNFX) There is $\exp :$ Ord \rightarrow Ord \rightarrow Ord satisfying the specification for ordinal exponentiation if and only if Excluded Middle holds.

Ordinal exponentiation, in general?

Theorem. $\lambda \beta .(\beta=0)$ satisfies the specification for the exponential 0^{β}.

Can we define α^{β} for arbitrary α, constructively?
Theorem. (dJKNFX) There is exp : Ord \rightarrow Ord \rightarrow Ord satisfying the specification for ordinal exponentiation if and only if Excluded Middle holds.

Proof. (\Leftarrow) Use EM to decide between 0^{β} and $(1+\gamma)^{\beta}$.

Ordinal exponentiation, in general?

Theorem. $\lambda \beta .(\beta=0)$ satisfies the specification for the exponential 0^{β}.

Can we define α^{β} for arbitrary α, constructively?
Theorem. (dJKNFX) There is $\exp :$ Ord \rightarrow Ord \rightarrow Ord satisfying the specification for ordinal exponentiation if and only if Excluded Middle holds.

Proof. (\Leftarrow) Use EM to decide between 0^{β} and $(1+\gamma)^{\beta}$. (\Rightarrow) If such an exp exists, it is monotone, since it is continuous.

Ordinal exponentiation, in general?

Theorem. $\lambda \beta .(\beta=0)$ satisfies the specification for the exponential 0^{β}.

Can we define α^{β} for arbitrary α, constructively?
Theorem. (dJKNFX) There is $\exp :$ Ord \rightarrow Ord \rightarrow Ord satisfying the specification for ordinal exponentiation if and only if Excluded Middle holds.

Proof. (\Leftarrow) Use EM to decide between 0^{β} and $(1+\gamma)^{\beta}$. (\Rightarrow) If such an exp exists, it is monotone, since it is continuous. Let P : Prop be given.

Ordinal exponentiation, in general?

Theorem. $\lambda \beta .(\beta=0)$ satisfies the specification for the exponential 0^{β}.

Can we define α^{β} for arbitrary α, constructively?
Theorem. (dJKNFX) There is $\exp :$ Ord \rightarrow Ord \rightarrow Ord satisfying the specification for ordinal exponentiation if and only if Excluded Middle holds.

Proof. (\Leftarrow) Use EM to decide between 0^{β} and $(1+\gamma)^{\beta}$. (\Rightarrow) If such an exp exists, it is monotone, since it is continuous. Let P : Prop be given. We have

$$
1=\exp (P+1) 0 \leq \exp (P+1) 1=P+1
$$

Ordinal exponentiation, in general?

Theorem. $\lambda \beta .(\beta=0)$ satisfies the specification for the exponential 0^{β}.

Can we define α^{β} for arbitrary α, constructively?
Theorem. (dJKNFX) There is exp : Ord \rightarrow Ord \rightarrow Ord satisfying the specification for ordinal exponentiation if and only if Excluded Middle holds.

Proof. (\Leftarrow) Use EM to decide between 0^{β} and $(1+\gamma)^{\beta}$. (\Rightarrow) If such an exp exists, it is monotone, since it is continuous. Let P : Prop be given. We have

$$
1=\exp (P+1) 0 \leq \exp (P+1) 1=P+1
$$

and P or $\neg P$ holds depending on if \star : 1 hits inl p or inr \star for $f: 1 \rightarrow P+1$.

Summary

Ordinals are closed under well behaved addition and multiplication.
New: However, a fully general exponentiation operation is possible if and only if Excluded Middle holds.

The best we can do is $(1+\gamma)^{\beta}$ and 0^{β} separately.

UKI Full Agda formalisation.
Building on Escardó's TypeTopology.
https://github.com/fredrikNordvallForsberg/
TypeTopology/blob/exponentiation/source/Ordinals/
Exponentiation.lagda

References

Thierry Coquand, Henri Lombardi and Stefan Neuwirth. 'Constructive theory of ordinals'. In: Mathematics for Computation. Ed. by Marco Benini et al. World Scientific, 2023, pp. 287-318. DOI: 10. 1142/12500.

Martín Hötzel Escardó et al. 'Ordinals in univalent type theory in Agda notation'. Agda development, HTML rendering available at: https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.index.html. 2018.

Nicolai Kraus, Fredrik Nordvall Forsberg and Chuangjie Xu. 'Type-Theoretic Approaches to Ordinals'. In: Theoretical Computer Science 957 (2023). DOI: 10.1016/j.tcs.2023.113843.

Per Martin-Löf. Notes on constructive mathematics. Almqvist \& Wiksell, 1970.
Wacław Sierpiński. Cardinal and Ordinal Numbers. Vol. 34. Monografie Matematyczne. Państwowe Wydawnictwo Naukowe, 1958.

Andrew Swan. 'On Dividing by Two in Constructive Mathematics'. 2018. arXiv: 1804.04490 [math.LD].
Paul Taylor. 'Intuitionistic Sets and Ordinals'. In: The Journal of Symbolic Logic 61.3 (1996),
pp. 705-744. DOI: $10.2307 / 2275781$.

