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Overview

1. Approaches to directed type theory

2. Axiomatising directed fibrations

3. Consequences
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Types are Fibrations

Key insight: Martin-Löf type theory can be modeled by categories
with a pullback-stable class of maps called fibrations.

Type Theory Category with fibrations

Types Fibrations
Terms Sections

Identity types Path objects
Path induction Path lifting

Is there directed analogue of this table?
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Clans

Definition
A clan is a category C with a class of morphisms F called
fibrations such that:

▶ Fibrations are stable under pullback

▶ C has a terminal object, and all objects are fibrant



Tribes

Definition
A morphism u in C is called anodyne if it has the left-lifting
property w. r. t. fibrations.

U E

V B

u f

Definition
A tribe is a clan with anodyne-fibration factorisations, whose
anodyne morphisms are pullback-stable.



Path Object

Definition
A path object for an object A in a tribe is a factorisation of the
diagonal ∆ : A → A× A

A PA A× A
rA

∆A

The lifting properties of anodyne morphism imply that each
commutative diagram as below has a filler.

A E

PA B

rA
J



Examples of tribes

▶ The category of contexts of a type theory with identity types.
Fibrations are dependent projections.

▶ The category of fibrant objects of a right proper model
category whose monomorphisms are cofibrations.



Diclans

Suppose that C is a tribe, and for each A ∈ C, let FibA(C) ≤ C/A
be the category of fibrations over A in C.



Diclans

We define a diclan structure on C so that:

▶ For each A ∈ C, and each v ∈ {+,−}, we have a subcategory

FibvA(C) ↪→ FibA(C)

We refer to the objects in FibvA(C) as v-fibrations, and
morphisms as v-cartesian morphisms.

▶ These inclusions create terminal objects, pullbacks of
fibrations, and path objects.
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▶ The v-fibrations are closed under composition and
pullback-stable. Thus, for each fibration f : A → B, we have a
functor

FibvA(C) FibvB(C)f ◦

▶ N.B. These functors need not be adjoint.

▶ We often ask that FibvA(C) be a replete subcategory of
FibA(C).
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C
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Iterating fibrations

▶ If C is a clan, then FibA(C) is a clan. Fibrations in FibA(C) are
fibrations in C.

▶ If C is a diclan, we want a diclan structure on Fib+A (C).
▶ We can take +-fibrations in Fib+A (C) to be +-fibrations in C.
▶ What are −-fibrations in Fib+A (C)?
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Iterating fibrations

We require a coinductive structure on a diclan C so that:

▶ For each object A ∈ C, we have a diclan structure on FibA(C)
and FibvA(C) for v ∈ {+,−}.

▶ The inclusions FibvA(C) ↪→ FibA(C) preserve diclan structure.

▶ Base change functors preserve diclan structure.
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▶ For each v-fibration f : E ↠ A, we have

Fib+f (Fib
+
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Thus, the arrow p in the diagram below is a v-fibration over E
if and only if it is a v-fibration over f in FibvA(C).
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Compatibility Conditions

▶ Given a span of fibrations

E

A B

f g

the following are equivalent:

▶ f is a −-fibration over A, and (f , g) is a +-fibration over the
projection πA in Fib−A (C ).

▶ g is a +-fibration over B, and (f , g) is a −-fibration over the
projection πB in Fib+A (C ).

E A× B

A

πA
f

(f ,g)
E A× B

B

πB
g

(f ,g)



Compatibility Conditions

▶ We also require a condition on morphisms of two-sided
fibrations.

▶ Thus, we have a notion of two-sided fibration.
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Comprehension towers

For each sequence of variances v1, . . . , vn, we obtain a tower of
Grothendieck fibrations and cartesian functors:

Fibv1,...,vn(C) C→···→

...
...

Fibv1,v2(C) C→→

Fibv1(C) C→

C
s



Directed Path Objects

Definition
A v-sprout over A in C is a pair X H Afr where f is
a v-fibration. We say that a v-sprout is a v-cofibration if for each
commutative diagram of solid arrows

X F

H E

A

r

f

v

u

w

g

if f , g , fr , vg are v-fibrations, v ,w are v-cartesian, and v is a
fibration, then we can find a v-cartesian filler.
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Directed Path Objects

Definition
A dipath object on A is a factorisation of the diagonal

A HA A× A
(sA,tA)rA

∆A

such that (sA, tA) is a two-sided fibration, (rA, sA) is a
−-cofibration, and (rA, tA) is a +-cofibration.



Ditribes

Definition
A ditribe is a diclan C such that:

▶ Each object A has a dipath object.

▶ For each x : X → A, let rx ,−, sx ,−, tx ,− be defined using the
pullback

X A

HA(x ,−) HA

X × A A× A

(sA,tA)

rA

x×A

sx,−×tx,−
⌟

rx,−

x

⌟

Then, (rx ,−, tx ,−) is a +-cofibration.



Ditribes

▶ For each x : X → A, let r−,x , s−,x , t−,x be defined using the
pullback

X A

HA(x ,−) HA

A× X A× A

(sA,tA)

rA

A×x

s−,x×tx,−
⌟

r−,x

x

⌟

Then, (rx ,−, sx ,−) is a −-cofibration.

In the intuitive type theory, this is based path induction. If we fix
the source, we can eliminate into covariant type families. If we fix
the target, we can eliminate into contravariant type families.
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Ditribes

▶ The slice clans FibA(C),FibvA(C) are also ditribes.

▶ The inclusion FibvA(C) ↪→ FibA(C) preserves ditribe structure.

▶ Base change functors preserves ditribe structure.

▶ Identity arrows are pseudo-natural: for each f : A → B, the
+-cartesian and −-cartesian solutions to the following lifting
problem agree:

A HB

HA B × B

A× A

rA

rB f

(fsA,ftA)

(sB ,tB)

(sA,tA)

f×f
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Examples

▶ The category of categories. +- and −-Fibrations are
Grothendieck (op)fibrations. Dipath objects are arrow
categories.

▶ More generally, any 2-category with finite limits.

▶ The category of quasicategories. +- and −-fibrations are
(co)cartesian fibrations. Dipath objects are arrow
(∞, 1)-categories.

▶ More generally, any ∞-cosmos induced by a model category
whose monomorphisms are cofibrations.
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Examples (WIP)

▶ The category of 2-categories. +- and −-fibrations are normal
2-fibrations. Dipath objects are lax arrow categories.

An
object of HA is an arrow f : X → Y . An arrow f → g is a
diagram

X Y

Z W

f

g

▶ We can probably add some adjectives. e.g. “split”.

▶ The category of strict n-categories. +- and −-fibrations are
normal n-fibrations.
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▶ We can “reverse the polarity”. For each ditribe C, there is a
ditribe Cco whose +-fibrations are −-fibrations in C and vice
versa.

▶ In most cases, the fibrations are generated by the dipath
objects.
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First consequences

▶ Directed path objects are essentially unique.

▶ Directed path objects of compound types can be described
using their parts. e. g. directed paths of pairs are pairs of
direct paths.
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▶ The lifting properties induce a notion of directed path
composition.

▶ The tower of directed path objects A,HA,HHA
, . . . has the

structure of a globular ω-category.



Types are weak ω-categories

▶ The lifting properties induce a notion of directed path
composition.

▶ The tower of directed path objects A,HA,HHA
, . . . has the

structure of a globular ω-category.



Directed fibrations are higher Grothendieck fibrations

The +- and −-fibrations satisfy lifting properties analogous to
those of Grothendieck fibrations.

▶ If f : E ↠ A is a −-fibration, then we have a −-cartesian filler:

E E

HA ×A E A

rA×AE

sAπ

f
λE

▶ Intuitively, if we have ϕ : a′ → a and e : E such that f (e) = a,
then f λE (ϕ, e) = a′.



Directed fibrations are higher Grothendieck fibrations

The +- and −-fibrations satisfy lifting properties analogous to
those of Grothendieck fibrations.

▶ If f : E ↠ A is a −-fibration, then we have a −-cartesian filler:

E HE

HA ×A E E

A

rA×AE

λE

sE

sAπ
f

rE

lift−E

▶ Intuitively, if we have ϕ : a′ → a and e : E such that f (e) = a,
then sE lift−E (ϕ, e) = λE (ϕ, e). A calculation in FibA(C)
implies that

lift−E (ϕ, e) : λE (ϕ, e) → e



Two-sided lifting conditions

▶ Other path lifting principles follow from the axioms.

▶ Suppose that E ↠ B × C is a two-sided fibration. We can
characterize those ϕ such that the following sort of lifting
problem admit solutions that are both +- and −-cartesian.

A HB

HA B × B

A× A

rA

ϕ

(fsA,ftA)

(sB ,tB)

(sA,tA)

f×f

▶ In general ϕ behaves like a lax natural transformation. For the
problem above, we need ϕ which behave like pseudo-natural
transformations.



Two-sided lifting conditions

▶ Suppose that M ↠ A× B, N ↠ B × C , E ↠ A× C are
two-sided fibrations.

M ×A N E

M ×B HB ×B N A× C

A× C

M×B rB×BN

ϕ

We can characterize those ϕ such that lifting problems of this
form have a solution that is both +-cartesian and −-cartesian.

▶ Such ϕ are equivariant: they respect both the covariant and
the contravariant action of HB .



Thank you.


