#### **Tangent bundles and Euler classes**

 $\label{eq:ulrik Buchholtz} \begin{array}{ccc} \mbox{Ulrik Buchholtz}^1 & \mbox{J. Daniel Christensen}^2 & \mbox{David Jaz Myers}^3 & \mbox{Egbert Rijke}^4 \end{array}$ 

University of Nottingham, United Kingdom

University of Western Ontario, London, Ontario, Canada

Center for Topological and Quantum Systems, NYU, Abu Dhabi

University of Ljubljana, Ljubljana, Slovenia

3<sup>rd</sup> of April, 2024 HoTT/UF Workshop, Leuven

## Overview and preliminaries

Overview:

- Euler classes of oriented sphere bundles
- $\bullet$  Whitney sum formula  $\bigtriangleup$  WIP
- Comparison with Thom class
- Tangent sphere bundles of spheres
- Outlook

For any type T, we have the classifying types of T-bundles,

 $BAut(T) := \sum_{X:\mathcal{U}} ||X \simeq T||,$ 

and of *oriented* T-bundles,

 $BAut_1(T) := \sum_{X:\mathcal{U}} ||X \simeq T||_0.$ 

A pointed type T is *central*, if evaluation at the base point induces an equivalence:

$$\operatorname{ev}_{\operatorname{pt}_T} : (T \to T)_{(\operatorname{id}_T)} \xrightarrow{\sim} T.$$

If T is central, then for any  $(X,\omega):\mathrm{BAut}_1(T),$  evaluation at the base point gives an equivalence

$$\left((T,|\mathrm{id}|_0)=(X,\omega)\right)\xrightarrow{\sim} X.$$

### Euler classes

We can *define* (up to resizing):

$$B^{n}\mathbb{Z} :\equiv BAut_{1}(B^{n-1}\mathbb{Z})$$
$$B\mathcal{G}(n) :\equiv BAut(S^{n-1})$$
$$B\mathcal{SG}(n) :\equiv BAut_{1}(S^{n-1}).$$

The universal Euler class is the map

 $\mathbf{e}_n^{\mathbb{Z}} : \mathrm{BAut}_1(\mathbf{S}^{n-1}) \to \mathrm{BAut}_1(\mathbf{B}^{n-1}\mathbb{Z})$ 

induced by (n-1)-truncation for n > 1. Using notations above,  $e_n^{\mathbb{Z}} : BSG(n) \to B^n\mathbb{Z}$ . The direct sum of two oriented sphere bundles is given by the join (with suitable orientation):

$$\begin{split} \oplus : \mathcal{BSG}(n) \to_* \mathcal{BSG}(m) \to_* \mathcal{BSG}(n+m) \\ \bar{X} \oplus \bar{Y} :\equiv (X \star Y, \_) \end{split}$$

The Whitney sum formula states

$$e_{n+m}(\bar{X}\oplus\bar{Y}) = e_n(\bar{X}) \smile e_m(\bar{Y})$$

This is automatic if we can define the cup product using joins:

$$: \mathbf{B}^{n}\mathbb{Z} \to_{*} \mathbf{B}^{m}\mathbb{Z} \to_{*} \mathbf{B}^{n+m}\mathbb{Z}$$
$$\bar{X} \oplus \bar{Y} :\equiv (||X \star Y||_{n+m-1}, .)$$

Notice the level shift compared to using truncation as the definition,

$$|_{-}|_{n}: \mathbf{S}^{n} \to_{*} \mathbf{B}^{n} \mathbb{Z} :\equiv \|\mathbf{S}^{n}\|_{n}$$

with the cup product induced by the smash product

$$\mathbf{S}^n \to_* \mathbf{S}^m \to_* \mathbf{S}^n \wedge \mathbf{S}^m \simeq_* \mathbf{S}^{n+m}$$

# Whitney sum formula (sketch)

Another way of defining the cup product is via delooping:

By induction on n, we use the equivalence

$$B^{n+1}\mathbb{Z} \to_* B^m \mathbb{Z} \to_* B^{n+1+m} \mathbb{Z}$$
$$\simeq \Omega B^{n+1}\mathbb{Z} \to_* B^m \mathbb{Z} \to_* \Omega B^{n+1+m} \mathbb{Z}$$
$$\simeq B^n \mathbb{Z} \to_* B^m \mathbb{Z} \to_* B^{n+m} \mathbb{Z}$$

to define  $\smile_{n+1,m}$  in terms of  $\smile_{n,m}$ . For the base case  $n \equiv 0$ , we use an induction on m.

To compare with the join definition, we need in the step case a pointed homotopy:

Since the bottom right type is an H-space, it's enough to give an unpointed homotopy (thanks, Evan!). Fix  $\bar{Y} : B^m \mathbb{Z}$ . We need the outer square below to commute:

The bottom square boils down to equivalences

$$\|X \star Y\|_{n+m-1} \simeq \left( |\operatorname{inl} \bar{X}| =_{\|\mathbf{B}^n \mathbb{Z} \star Y\|_{n+m}} |\operatorname{inl} \bar{\mathbf{B}}^{n-1} \mathbb{Z}| \right),$$

with a compatibility when  $\bar{X}$  is the base point.

### Thom classes

The universal Thom space is the Thom space of the universal oriented n-dimensional bundle,



and we want the universal Thom class  $th_n$  making the diagram commute.

We have a map of spans inducing a commuting cube,



where the front left and the back squares are pushouts. Then the front right is as well, and this gives an equivalent definition of the Thom space.

#### Thom class continued

We get an equivalence

$$(\operatorname{Th}_n \to_* \mathbf{B}^n \mathbb{Z}) \simeq \prod_{\bar{X}} (\Sigma X \to_* \mathbf{B}^n \mathbb{Z}),$$

so we can define the Thom class in the RHS, and since  $(\Sigma X \rightarrow_* B^n \mathbb{Z})$  is a set, it suffices to let the map  $\Sigma S^{n-1} \rightarrow_* B^n \mathbb{Z}$  be the loop–suspension adjunct of the composite generator:

$$S^{n-1} \to_* B^{n-1} \mathbb{Z} \to_* \Omega B^n \mathbb{Z}$$

To check that this restricts to the Euler class when restricted along  $i: BSG(n) \to Th_n$ , it's useful to note a further equivalence

$$(\Sigma X \to_* \mathbf{B}^n \mathbb{Z}) \simeq \sum_{\bar{Y}: \mathbf{B}^n \mathbb{Z}} \left( X \to (\bar{\mathbf{B}}^{n-1} \mathbb{Z} = \bar{Y}) \right),$$

where we have the map  $\bar{X}\mapsto ({\rm e}_n^{\mathbb{Z}}(\bar{X}),q),$  where q is the composite equivalence

$$X \to ||X||_n \to (\mathrm{pt} = \mathrm{e}_n^{\mathbb{Z}}(\bar{X})).$$

These definitions agree: To check this, note that this is a proposition, so it suffices to check the base point.

### Tangent sphere bundles of spheres

It's convenient for us to define  $S^n :\equiv \{\pm 1\}^{\star n+1}$ , where  $S^0 \simeq \{\pm 1\}$  is an H-space under multiplication, pointed at +1. This is equivalent to the suspension definition, since generally  $S^0 \star Y \simeq \Sigma Y$ .

A reflection on a type A is an equivalence  $r: A \simeq A$  together with a homotopy  $h: \mathrm{id}_A * r = \mathrm{sym}_{A,A}$ . A coherent reflection is one equipped with paths

$$h(\operatorname{inl} a) =_{\operatorname{inl} a = \operatorname{inr} a} \operatorname{glue}(a, a)$$
$$h(\operatorname{inr} a) =_{\operatorname{inr}(r(a)) = \operatorname{inl} a} \operatorname{glue}(a, r(a))^{-1}$$

for each a:A. The 0-sphere  ${\rm S}^0$  has a coherent reflection given by swapping the two points.

Fact:  $S^0$  has a coherent reflection (multiplication by -1). Intuition: the matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \sim \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

are homotopic via by counter-clockwise rotation.

We want to define the tangent sphere bundles of spheres  $\tau^{n+1}: S^n \to B\mathcal{G}(n)$  along with equivalences  $\theta^{n+1}(x): S^0 \star \tau^{n+1}(x) \simeq S^n$ . To also handle projective spaces, and with a hope to giving attaching maps for the cell structure of Grassmannians, we generalize.

### Tangent bundles of joins of torsors

Fix a type A. An A-torsor is a type E with a map  $t: E \to (A \simeq E)$ . By functoriality of join, this induces scalar multiplication maps  $\cdot : A \to E^{\star n} \to E^{\star n}$ .

If A has a reflection r, and E is an A-torsor, then for all  $n:\mathbb{N}$  and  $x:E^{\star n}$ , we have a type  $\tau^n(x)$  (merely equivalent to  $E^{\star n-1}$ ) and an equivalence  $\theta^n(x):A\star\tau^n(x)\simeq E^{\star n}.$ 

For n = 0, there's nothing to do. For  $x : E \star E^{\star n}$ , we induct on x, defining:

$$\tau^{n+1}(\operatorname{inl}(e)) :\equiv E^{\star n}$$
  
$$\tau^{n+1}(\operatorname{inr}(x)) :\equiv E \star \tau^n(x).$$

On glue(e, x), we take the composition

$$E^{\star n} \underbrace{\stackrel{\theta^n(x)^{-1}}{=}}_{A \star \tau^n(x)} A \star \tau^n(x) \underbrace{\stackrel{r^{-1} \star \mathrm{id}}{=}}_{A \star \tau^n(x)} A \star \tau^n(x) \underbrace{\stackrel{t(e) \star \mathrm{id}}{=}}_{E \star \tau^n(x)} E \star \tau^n(x).$$

For the point constructors, we define:

$$\begin{split} \theta^{n+1}(\operatorname{inl}(e)) &:= A \star E^{\star n} \xrightarrow{t(e) \star \operatorname{id}} E^{\star(n+1)} \\ \theta^{n+1}(\operatorname{inr}(x)) &:= A \star (E \star \tau^n(x)) \xrightarrow{\operatorname{twist}} E \star (A \star \tau^n(x)) \xrightarrow{\operatorname{id} \star \theta^n(x)} E^{\star(n+1)}. \end{split}$$

The glue case amounts to (use twist):

$$\begin{array}{ccc} A \star (A \star \tau^{n}(x)) & \xrightarrow{\operatorname{id} \star (t(e) \star \operatorname{id})} & A \star (E \star \tau^{n}(x)) \\ \overset{\operatorname{id} \star (r \star \operatorname{id}) \downarrow}{ & \downarrow \operatorname{twist}} & & \downarrow \operatorname{twist} \\ A \star (A \star \tau^{n}(x)) & \xrightarrow{t(e) \star \operatorname{id}} & E \star (A \star \tau^{n}(x)) \\ \overset{\operatorname{id} \star \theta^{n}(x) \downarrow}{ & \downarrow \operatorname{id} \star \theta^{n}(x)} & & \downarrow \operatorname{id} \star \theta^{n}(x) \\ A \star E^{\star n} & \xrightarrow{t(e) \star \operatorname{id}} & E \star E^{\star n} \end{array}$$

## Hairy ball theorem

If the reflection is coherent, then we have paths

 $\theta^n(e)(\operatorname{inl} a) = a \cdot e \quad \text{in } E^{\star n}.$ 

We get the *Hairy ball theorem*: If n is even, then the tangent bundle of  $S^n$  has no section.

*Proof.* Assume  $s:\prod_x\tau^{n+1}(x).$  Note that  ${\rm S}^0$  has a neutral element +1. For any x we have a path

$$x = 1 \cdot x = \theta^n(x)(\operatorname{inl} 1) = \theta^n(x)(\operatorname{inl} - 1) = -1 \cdot x.$$

Since n is even  $-1 \cdot \_$  equals  $r \star id$ , so the identity is homotopic to a map of degree -1.

We're also working on a proof via Euler classes: Let n > 0 and let  $E : B \to BSG(n)$  be an oriented sphere bundle on a type B. If E merely has a section, then  $e_n^{\mathbb{Z}}(E) = 0$ .

Let  $R: S^n \to \mathcal{U}$  be a family of (n-1)-connected types for  $n \ge 0$ . Then R merely has a section. In particular, for  $k \ge n$ , any k-sphere bundle on a n-sphere merely has a section.

### Thanks!