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Overview and preliminaries

Overview:

• Euler classes of oriented sphere bundles

• Whitney sum formula – △! – WIP

• Comparison with Thom class

• Tangent sphere bundles of spheres

• Outlook

For any type T , we have the classifying types
of T -bundles,

BAut(T ) :≡
∑

X:U∥X ≃ T∥,

and of oriented T -bundles,

BAut1(T ) :≡
∑

X:U∥X ≃ T∥0.

A pointed type T is central, if evaluation at the
base point induces an equivalence:

evptT : (T → T )(idT )
∼−→ T.

If T is central, then for any (X,ω) : BAut1(T ),
evaluation at the base point gives an
equivalence(

(T, |id|0) = (X,ω)
) ∼−→ X.



Euler classes

We can define (up to resizing):

BnZ :≡ BAut1(B
n−1Z)

BG(n) :≡ BAut(Sn−1)

BSG(n) :≡ BAut1(S
n−1).

The universal Euler class is the map

eZn : BAut1(S
n−1) → BAut1(B

n−1Z)

induced by (n− 1)-truncation for n > 1. Using
notations above, eZn : BSG(n) → BnZ.
The direct sum of two oriented sphere bundles
is given by the join (with suitable orientation):

⊕ : BSG(n) →∗ BSG(m) →∗ BSG(n+m)

X̄ ⊕ Ȳ :≡ (X ⋆ Y, )

The Whitney sum formula states

en+m(X̄ ⊕ Ȳ ) = en(X̄) ⌣ em(Ȳ )

This is automatic if we can define the cup
product using joins:

⌣ : BnZ →∗ BmZ →∗ Bn+mZ
X̄ ⊕ Ȳ :≡ (∥X ⋆ Y ∥n+m−1, )

Notice the level shift compared to using
truncation as the definition,

| |n : Sn →∗ BnZ :≡ ∥Sn∥n

with the cup product induced by the smash
product

Sn →∗ Sm →∗ Sn ∧ Sm ≃∗ Sn+m



Whitney sum formula (sketch)
Another way of defining the cup product is via
delooping:
By induction on n, we use the equivalence

Bn+1Z →∗ BmZ →∗ Bn+1+mZ
≃ ΩBn+1Z →∗ BmZ →∗ ΩBn+1+mZ
≃ BnZ →∗ BmZ →∗ Bn+mZ

to define ⌣n+1,m in terms of ⌣n,m. For the
base case n ≡ 0, we use an induction on m.

To compare with the join definition, we need in
the step case a pointed homotopy:

ΩBn+1Z Ω(BmZ →∗ Bn+1+mZ)

BnZ (BmZ →∗ Bn+mZ) .

Ω(⋆n+1,m)

≃ ≃

⋆n,m

Since the bottom right type is an H-space, it’s
enough to give an unpointed homotopy
(thanks, Evan!). Fix Ȳ : BmZ. We need the
outer square below to commute:

ΩBn+1Z ΩBAut1(∥BnZ ⋆ Y ∥n+m)

BnZ ∥BnZ ⋆ Y ∥n+m

BnZ BAut1(∥Bn−1Z ⋆ Y ∥n+m−1)

Ω(−⋆n+1,mȲ )

≃ ≃

≡

|inl−|

≃(−=pt)

−⋆n,mȲ

The bottom square boils down to equivalences

∥X⋆Y ∥n+m−1≃
(
|inl X̄|=∥BnZ⋆Y ∥n+m

|inl B̄n−1Z|
)
,

with a compatibility when X̄ is the base point.



Thom classes

The universal Thom space is the Thom space
of the universal oriented n-dimensional bundle,∑

X̄:BSG(n) X 1

BSG(n) Thn

BnZ,

⌜
i

en

thn

and we want the universal Thom class thn
making the diagram commute.

We have a map of spans inducing a commuting
cube, ∑

X̄ X

BSG(n) BSG(n) 1

∑
X̄ ΣX 1 Thn

Tn

∼

where the front left and the back squares are
pushouts. Then the front right is as well, and
this gives an equivalent definition of the Thom
space.



Thom class continued

We get an equivalence

(Thn →∗ BnZ) ≃
∏

X̄(ΣX →∗ BnZ),

so we can define the Thom class in the
RHS, and since (ΣX →∗ BnZ) is a set, it
suffices to let the map ΣSn−1 →∗ BnZ be
the loop–suspension adjunct of the
composite generator:

Sn−1 →∗ Bn−1Z →∗ ΩBnZ.

To check that this restricts to the Euler class when
restricted along i : BSG(n) → Thn, it’s useful to
note a further equivalence

(ΣX →∗ BnZ) ≃
∑

Ȳ :BnZ
(
X → (B̄n−1Z = Ȳ )

)
,

where we have the map X̄ 7→ (eZn(X̄), q), where q is
the composite equivalence

X → ∥X∥n →
(
pt = eZn(X̄)

)
.

These definitions agree: To check this, note that
this is a proposition, so it suffices to check the base
point.



Tangent sphere bundles of spheres

It’s convenient for us to define
Sn :≡ {±1}⋆n+1, where S0 ≃ {±1} is an
H-space under multiplication, pointed at +1.
This is equivalent to the suspension definition,
since generally S0 ⋆ Y ≃ ΣY .

A reflection on a type A is an equivalence
r : A ≃ A together with a homotopy
h : idA ∗ r = symA,A.
A coherent reflection is one equipped with
paths

h(inl a) =inl a=inr a glue(a, a)

h(inr a) =inr(r(a))=inl a glue(a, r(a))−1

for each a : A.
The 0-sphere S0 has a coherent reflection given
by swapping the two points.

Fact: S0 has a coherent reflection
(multiplication by −1). Intuition: the matrices(

1 0
0 −1

)
∼

(
0 1
1 0

)
are homotopic via by counter-clockwise
rotation.

We want to define the tangent sphere bundles
of spheres τn+1 : Sn → BG(n) along with
equivalences θn+1(x) : S0 ⋆ τn+1(x) ≃ Sn. To
also handle projective spaces, and with a hope
to giving attaching maps for the cell structure
of Grassmannians, we generalize.



Tangent bundles of joins of torsors

Fix a type A. An A-torsor is a type E
with a map t : E → (A ≃ E).
By functoriality of join, this induces scalar
multiplication maps · : A → E⋆n → E⋆n.

If A has a reflection r, and E is an
A-torsor, then for all n : N and x : E⋆n,
we have a type τn(x) (merely equivalent
to E⋆n−1) and an equivalence
θn(x) : A ⋆ τn(x) ≃ E⋆n.

For n = 0, there’s nothing to do. For
x : E ⋆ E⋆n, we induct on x, defining:

τn+1(inl(e)) :≡ E⋆n

τn+1(inr(x)) :≡ E ⋆ τn(x).

On glue(e, x), we take the composition

E⋆n
θn(x)−1

=======A⋆τn(x)
r−1⋆id
======A⋆τn(x)

t(e)⋆id
======E⋆τn(x).

For the point constructors, we define:

θn+1(inl(e)):≡A⋆E⋆n
t(e)⋆id−−−−→E⋆(n+1)

θn+1(inr(x)):≡A⋆(E⋆τn(x))
twist−−−→E⋆(A⋆τn(x))

id⋆θn(x)−−−−−→E⋆(n+1).

The glue case amounts to (use twist):

A ⋆ (A ⋆ τn(x)) A ⋆ (E ⋆ τn(x))

A ⋆ (A ⋆ τn(x)) E ⋆ (A ⋆ τn(x))

A ⋆ E⋆n E ⋆ E⋆n .

id⋆(t(e)⋆id)

id⋆(r⋆id)
t(e)⋆id

twist

t(e)⋆id
id⋆θn(x) id⋆θn(x)



Hairy ball theorem

If the reflection is coherent, then we have paths

θn(e)(inl a) = a · e in E⋆n.

We get the Hairy ball theorem: If n is even,
then the tangent bundle of Sn has no section.

Proof. Assume s :
∏

x τ
n+1(x). Note that S0

has a neutral element +1. For any x we have a
path

x = 1·x = θn(x)(inl 1) = θn(x)(inl−1) = −1·x.

Since n is even −1 · equals r ⋆ id, so the
identity is homotopic to a map of degree −1.

We’re also working on a proof via Euler classes:
Let n > 0 and let E : B → BSG(n) be an
oriented sphere bundle on a type B. If E
merely has a section, then eZn(E) = 0.

Let R : Sn → U be a family of
(n− 1)-connected types for n ≥ 0. Then R
merely has a section. In particular, for k ≥ n,
any k-sphere bundle on a n-sphere merely has
a section.

Thanks!
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