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Connected covers were originally introduced in 1952 by Cartan and Serre [4, 5] and, independently,
Whitehead [13]. Using connectivity we can analyze homotopy groups using (co)homology [2, 6]. Study-
ing the homotopy groups of important spaces (especially the spheres) has been central to synthetic ho-
motopy theory from the beginning [c.f. 12, Chapter 8], so it is useful to understand and formalize key
properties of connected covers (defined and motivated below) in a range of settings. Work on connected
covers in HoTT has been done previously. In particular, a proof of the universal property of connected
covers (stated below) appeara in Buchholtz, van Doorn, and Rijke [3] and was formalized by those au-
thors in Lean 2 [8] and also, as part of the work of Christensen and Scoccola [6], in Coq [1]. Other relevant
work includes that of Shulman and Hou (Favonia) [11] – who work with the universal cover of a space,
which is another name for the 1st connected cover. The work being presented here is a formalization of
some of the theory of connected covers in Cubical Agda.

If X is a pointed space, we write X〈n〉 for the nth connected cover of X – defined to be the fiber of the
truncation map | − |n : X → ‖X‖n. The nth connected cover is n-connected and there is a universal
map X〈n〉 → X – in the sense that if Y is any n-connected, pointed space, then we have an equivalence
of pointed function types: (Y →• X) ' (Y →• X〈n〉) given by composition with the universal map.
Together these imply the basic facts that πk(X〈n〉) = 0 if k ≤ n and πk(X〈n〉) = πkX otherwise. Another
basic fact about connected covers is that (X〈n〉)〈n+1〉 = X〈n+1〉 so there is a universal map X〈n+1〉 →
X〈n〉. The fiber of this map is K(πnX,n + 1) – the main result of this work is a formal proof of this fact.
The proof uses Whitehead’s lemma, which states that if X and Y are spaces with finite h-levels, then
f : X → Y is an equivalence if and only if ‖f‖0 : ‖X‖0 → ‖Y ‖0 is an equivalence and πn(f) : πn(X,x)→
πn(Y, f(x)) is an equivalence for each n ≥ 1 and each x : X . Whitehead’s lemma was also formalized in
Cubical Agda as a part of this work [7].

To get a feeling for how connected covers can be useful for studying homotopy groups, consider the
following simple example (with details omitted): The wedge product of a family of spaces (denoted with
a∨ or a

∨
depending on the size of the family) is the space that results from “gluing” those spaces together

at their basepoints. The 1st connected cover of S1 ∨S2 is
∨

Z S
2. It is a well-known fact in classical algebraic

topology that the nth homology group of a wedge sum of a family of spaces is the direct product of the nth
homology groups of those spaces [see e.g. 9, Cor. 2.25]. So, using the Hurewicz theorem [6] – which tells
us that the n+1th homotopy group of an n connected space is equal to the n+1th homology group – and
some facts we mentioned above, we have: π2(S1 ∨S2) = π2(

∨
Z S

2) = H2(
∨

Z S
2) =

⊕
ZH2(S2) =

⊕
Z Z.

The code from the formalization is available online [10].
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