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We construct tangent bundles of spheres in Homotopy Type Theory and show the Hairy ball
theorem: the tangent bundle admits a nowhere vanishing section if and only if the sphere is
odd-dimensional.

We give both a direct proof of the Hairy ball theorem, as well as a proof via Euler classes,
which we give a new presentation of.

Ideally, as in classical homotopy theory, we would like to have the tangent bundles of (the
homotopy types of) n-manifolds represented by maps to BO(n), the classifying space of the
orthogonal group O(n). But since it’s still open to construct the types BO(n), we instead
construct maps to BG(n), the classifying type of the group of self homotopy equivalences of the
(n− 1)-sphere Sn−1. This can be defined simply as

BG(n) :=
∑
X:U

∥X = Sn−1∥,

and a bundle ξ : M → BG(n) is then visibly a family of (n−1)-spheres. For any n-manifold M ,
the tangent bundle is then represented via the family of (n− 1)-spheres of unit tangent vectors
corresponding to the forgetful map BO(n) → BG(n).

It is possible to define τn : Sn → BG(n) simultaneously with a family of identifications
θn :

∏
x:Sn Στn(x) = Sn witnessing that the tangent bundle becomes trivial after adding a

trivial line bundle. Since we are ultimately looking for a general construction of Grassmannians,
which would help us define the types BO(n), we give a more general construction, abstracting
the essential features of the situation, along the following lines:

Let A and E be types. We say that E is a torsor for the type A if E is inhabited
and we have a map T : E → (A ≃ E). For example, any 2-element type is a torsor for the
booleans/0-sphere S0.

We say that A has a reflection if there exists r : A ≃ A and h : idA ∗ r = symA,A,
identifying two maps A ∗A → A ∗A, where ∗ denotes the join operation and symA,A swaps the
two join factors. Note that r is necessarily an involution, since symA,A is. In the case of S0, we
let r be the involution swapping the two points.

We say that A has a coherent reflection if in addition we have that h(inl a) = glue(a, a) :
inl a = inr a and h(inr a) = glue(a, r(a))−1 : inr(r(a)) = inl a for each a : A. This is the case for
the reflection on S0.

Theorem 1. Let A be a type with a reflection r and let E be a torsor for A with structure map T .
Then for each n : N and x : E∗n, we have τn(x) : U and an equivalence θn(x) : A∗τn(x) ≃ E∗n.
Furthermore, each τn(x) is merely equivalent to E∗(n−1) and A∗(n−1).

Let E be a torsor for A with structure map T . For a : A, we get a map λe.T (e, a) : E → E.
By functoriality of the join power, this gives a map A → E∗n → E∗n which we call scalar
multiplication. We write it as a ·e for a : A and e : E∗n. In the case of the spheres, considered
as join powers of S0, the scalar multiplication becomes the antipodal map (and the identity).
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Theorem 2. Let A be a type with a coherent reflection r and let E be a torsor for A with
structure map T . Then we have a path

Hn
a,e : θ

n(e)(inl a) = a · e in E∗n

for n : N, a : A, and e : E∗n.

Theorem 3. Let A be a type with a coherent reflection r and let E be a torsor for A with
structure map T . Assume that there exists an element 1 : A such that T (e, 1) = e for all e : E.
Let n : N and assume that there exists a section s :

∏
x τ

n(x) of the tangent bundle of E∗n.
Then a · x = x for all a : A and x : E∗n.

Corollary 4 (Hairy Ball Theorem). If n is even, then the tangent bundle of (S0)∗(n+1) ≃ Sn

has no section.

Proof. Assume that we have a section s :
∏

x τ
n+1(x), where x runs over (S0)∗(n+1). Note that

in the torsor structure for S0 over itself, we have that T (e, 1) = e for all e : S0. Thus, by
Theorem 3, we have that (−1) · x = x for all x : (S0)∗(n+1). The map (−1) · − is by definition
r∗(n+1). Note that r∗2 = (id ∗ r) ◦ (r ∗ id) = sym ◦ sym = id. Therefore, since n is even,
r∗(n+1) = r ∗ id. Under the equivalence of S0 ∗X with the suspension ΣX, r ∗ id corresponds to
the self-equivalence that reverses N and S in the suspension, which gives negation in homotopy
groups. So r ∗ id corresponds to (−1) : πn+1(S

n+1) ≃ Z. This contradicts the fact that r ∗ id is
homotopic to the identity map.

We have formalized these results using the Coq-HoTT library.

Euler classes We also develop an alternative approach to the Hairy ball theorem via Euler
classes. By proving that the Euler class of τn is 2 in even dimensions and 0 in odd dimensions,
the Hairy ball theorem follows. Euler classes are defined for oriented sphere bundles.

We build on [BCFR23] to define orientations. If A is Sn or K(Z, n) and X is any type
identifiable with A, then ∥A = X∥0 is a 2-element set, the the set of orientations of X.
Let BAut+(X) :≡ ΣX:BAut(A)∥A = X∥0 be the type of oriented types identifiable with A. By
[BCFR23, Prop. 5.9], for n > 1, we can identify the type BAut+(K(Z, n − 1)) with K(Z, n).
This then yields a particularly direct way of defining Euler classes: The (universal) Euler
class is the map

eZ : BAut+(S
n−1) → BAut+(K(Z, n− 1))

induced by (n− 1)-truncation.

Theorem 5. Let n > 1 and let P : X → BAut+(S
n−1) be an oriented sphere bundle on a type

X. If P merely has a section, then eZ(P ) = 0.

We also prove that this definition of the Euler class is correct since it agrees with the pullback
of the Thom class along the zero section map from the base to the Thom space.

Time permitting, we will also discuss twisted Euler classes and further results related to our
work towards defining homotopy manifolds in HoTT.
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