
On commutativity, total orders, and sorting

Wind Wong1, Vikraman Choudhury∗2, and Simon J. Gay3

1,3University of Glasgow
2Università di Bologna and OLAS Team, INRIA

February 25, 2024

In this talk, we study free monoids, free commutative monoids, and their connections with sorting and well-orders.
Univalent type theory provides a rigorous framework for implementing these ideas, in the construction of free
algebras using higher inductive types and quotients, and reasoning up to equivalence using categorical universal
properties. The main contributions are a new framework for universal algebra (free algebras and their universal
properties), various constructions of free monoids and free commutative monoids (with proofs of their universal
properties), applications to proving combinatorial properties of these constructions, and finally an axiomatic
understanding of sorting. Our results have been formalized in Cubical Agda, and the formalization is available at:
https://github.com/pufferffish/agda-symmetries/.

Background
First, we review the basics of universal algebra, free algebras and their universal property. This is standard in
the literature on (first-order) universal algebra and equational logic (predating abstract clones and Lawvere
theories). We write Set for the category of hSets and functions. A signature 𝜎 is given by a set of operations with
an arity function: (op ∶ Set) × (ar ∶ op → Set). This gives a signature endofunctor 𝐹𝜎(𝑋) ∶≡ (𝑓 ∶ op) × (𝑋ar(𝑓)) on
Set. A 𝜎-structure 𝔛 (with carrier set 𝑋) is an 𝐹𝜎-algebra: (𝑋 ∶ Set) × (𝛼𝑋 ∶ 𝐹𝜎(𝑋) → 𝑋), and a homomorphism of
𝜎-structures is a 𝐹𝜎-algebra morphism, giving the category of 𝐹𝜎-algebras 𝐹𝜎-Alg. A concrete example for the case
of monoids is given in section 2.

The forgetful functor 𝑈𝜎 ∶ 𝐹𝜎-Alg → Set (which gives the underlying carrier set), admits a left adjoint,
that produces the free 𝜎-structure (or 𝐹𝜎-algebra) construction on a carrier set. As is standard, this construc-
tion is given by an inductive type of trees Tr𝜎(𝑉), generated by two constructors: • leaf ∶ 𝑉 → Tr𝜎(𝑉), and
• node ∶ 𝐹𝜎(Tr𝜎(𝑉)) → Tr𝜎(𝑉). Tr𝜎(𝑉) is canonically an 𝐹𝜎-algebra: 𝔗(𝑉) = (Tr𝜎(𝑉), node), free on the set of gen-
erators 𝑉, with the universal map 𝜂𝑉 ∶ 𝑉 → Tr𝜎(𝑉) given by leaf. The universal property states that, given any
𝜎-structure 𝔛, composition with 𝜂𝑉 is an equivalence: (−) ∘ 𝜂𝑉 ∶ 𝐹𝜎-Alg (𝔗(𝑉), 𝔛) ∼⟶ (𝑉 → 𝑋). The inverse to this
map is the extension operation (−)♯, which extends a map 𝑓∶ 𝑉 → 𝑋 to a homomorphism 𝑓♯ ∶ 𝔗(𝑉) → 𝔛.

An equational signature 𝜀 is given by a set of equations with an arity of free variables for each equation:
(eq ∶ Set) × (fv ∶ eq → Set). A system of equations over (𝜎, 𝜀) (or a theory 𝑇(𝜎,𝜀)) is given by a pair of trees on the set
of free variables, for each equation: 𝓁,𝓇∶ (𝑒 ∶ eq) → Tr𝜎(fv(𝑒)). A 𝜎-structure 𝔛 satisfies 𝑇, written 𝔛 ⊨ 𝑇, if, for each
equation 𝑒 ∶ eq and 𝜌 ∶ fv(𝑒) → 𝑋, we have 𝜌♯(𝓁(𝑒)) = 𝜌♯(𝓇(𝑒)). The full subcategory of 𝐹𝜎-Alg given by 𝜎-structures
satisfying 𝑇(𝜎,𝜀) is the variety of 𝑇(𝜎,𝜀)-algebras. The free object in the variety of 𝑇(𝜎,𝜀)-algebras is, similarly, given by
the left adjoint to the forgetful functor to Set. Classically, this is constructed by quotienting the free 𝐹𝜎-algebra by
the congruence relation generated by the equations, which requires non-constructive principles (such as assuming
the sets of arities support choice, see [1, § 7]). In this talk, we only consider the construction of free algebras for the
specific varieties of monoids and commutative monoids, in section 2.

Monoids and Commutativity
The signature for monoids 𝜎Mon is given by two operations (unit and multiplication) of arity 0 and 2, respectively,
written as (Fin2, {0 ↦ Fin0; 1 ↦ Fin2}). The equational signature for monoids 𝜀Mon is given by three equations

∗Supported by EU Marie Skłodowska-Curie fellowship 101106046 ReGraDe-CS.

1

https://github.com/pufferffish/agda-symmetries/


(unitl, unitr, assoc) which use 1, 1, and 3 free variables, respectively, written as (MonSig, {unitl ↦ Fin1; unitr ↦
Fin1; assoc ↦ Fin3}). We write 𝑇Mon for the theory of monoids, which is given by the pairs of left and right trees,
using the free variables for each equation. Commutative monoids are given by the same signature of operations,
but additionally include the commutativity equation, which uses 2 free variables, written as 𝑇CMon.

In this framework, we study various constructions of free monoids and free commutative monoids, using HITs
and quotients, and prove the universal property for each construction. We construct:

• FreeMon and FreeCMon HITs, given by generators for operations and higher generators for equations, which
is the standard construction of free algebras in HoTT [7], and

• List, SList, CList, given by cons-lists, cons-lists with adjacent swaps, cons-lists with a commutation relation,
respectively, from [2, 5].

Using the construction of free algebras as quotients, we consider various commutativity relations on various
presentations of free monoids. Given a free monoid construction: 𝐴

𝜂
−⟶ ℒ(𝐴), a commutativity (or permutation)

relation is a binary relation ≈ on ℒ(𝐴) such that, 𝐴
𝜂
−⟶ ℒ(𝐴)

𝑞
−↠ ℒ(𝐴)/≈ is a free commutative monoid

construction. From this we construct:

• PList, a quotient of List by various permutation relations, considered in [3, 5], and

• Bag, a quotient of Array(𝐴) = (𝑛 ∶ ℕ) × (𝑓 ∶ 𝐴Fin(𝑛)) by (𝑛, 𝑓) ∼ (𝑚, 𝑔) ∶≡ (𝜎 ∶ Fin(𝑛) ≃ Fin(𝑚)) × (𝑓 = 𝑔 ∘ 𝜎),
considered in [2, 5].

We use these constructions to study various properties of free monoids and free commutative monoids:

• definitions of length, ∈, Any, All, by homomorphic extension,

• characterizations of the path spaces of each type,

• combinatorial properties, such asℳ(𝐴 + 𝐵) ≃ ℳ (𝐴) ×ℳ (𝐵) (dual of Fox’s theorem [4]),

• injectivity of cons𝐴(𝑥, −) for any 𝑥 ∶ 𝐴.

Total orders and Sorting
Finally, our main result is to use this framework to study sorting and total orders. It is commonly understood
that lists are ordered lists and bags are unordered lists. Our aim is to give a conceptual explanation of this fact –
commutativity forgets the canonical ordering on an ordered list, and the only way to recover an ordered list from
an unordered list is to sort it, which requires a total ordering on the elements.

Given a total order on a set𝐴, a sorting algorithm, informally, turns lists of𝐴 into sorted lists of𝐴. Formally, we
observe that this produces a section to the canonical homomorphism from the free monoid to the free commutative
monoid: 𝑞 ∶ ℒ (𝑋) −↠ ℳ (𝑋) (see [5]). Turning it around, we ask what it means for this section to be well-behaved
– a well-behaved section should recover the total order on the carrier set, which axiomatizes the correctness of a
sorting algorithm. Our final theorem is summarized below.

Definition 1. Given a section 𝑠 ∶ ℳ (𝑋) → ℒ (𝑋) to 𝑞, we say that a list 𝑥𝑠 ∶ ℒ (𝑋) is sorted (with respect to 𝑠), if there merely
exists a 𝑦𝑠 ∶ ℳ (𝑋) such that 𝑠(𝑦𝑠) = 𝑥𝑠.

A well-behaved section 𝑠 should satisfy the following two axioms, which axiomatizes a correct sorting algorithm.

Definition 2.

• is-head-least: the head of a sorted list is the least element: ∀𝑥 𝑦 𝑥𝑠. is-sorted𝑠(𝑥 ∶∶ 𝑥𝑠) ∧ 𝑦 ∈ (𝑥 ∶∶ 𝑥𝑠) → is-sorted𝑠(𝑥 ∶∶ 𝑦 ∶∶ []),

• is-tail-sort: the tail of a sorted list is sorted: ∀𝑥 𝑥𝑠. is-sorted𝑠(𝑥 ∶∶ 𝑥𝑠) → is-sorted𝑠(𝑥𝑠).

Finally, we state our main theorem.

Theorem 1. Let DecTotOrd(𝐴) be the set of decidable total orders on 𝐴, and Sort(𝐴) be the set of correct sorting functions with
carrier set𝐴. The function 𝑜2𝑠 ∶ DecTotOrd(𝐴) → Sort(𝐴) × isDiscrete(𝐴) is an equivalence.

To conclude, we will mention some work in progress, on generalizing this framework from sets to groupoids, using
a system of coherences on top of the system of equations. As an instance of this, we consider the construction of
free monoidal and free symmetric monoidal groupoids.

2



References
[1] Andreas Blass. “Words, free algebras, and coequalizers”. eng. In: Fundamenta Mathematicae 117.2 (1983), pp. 117–

160. url: http://eudml.org/doc/211359.

[2] Vikraman Choudhury and Marcelo Fiore. “Free Commutative Monoids in Homotopy Type Theory”. In:
Electronic Notes in Theoretical Informatics and Computer Science Volume 1-Proceedings of... (Feb. 2023). issn: 2969-2431.
doi: 10.46298/entics.10492.

[3] Nils Anders Danielsson. “Bag Equivalence via a Proof-Relevant Membership Relation”. In: Interactive Theorem
Proving. Ed. by Lennart Beringer and Amy Felty. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 149–
165. isbn: 978-3-642-32347-8.

[4] Thomas Fox. “Coalgebras and cartesian categories”. In: Communications in Algebra 4.7 (1976), pp. 665–667.
doi: 10.1080/00927877608822127. eprint: https://doi.org/10.1080/00927877608822127. url:
https://doi.org/10.1080/00927877608822127.

[5] Philipp Joram and Niccolò Veltri. “Constructive Final Semantics of Finite Bags”. In: 14th International Conference
on Interactive Theorem Proving (ITP 2023). Ed. by Adam Naumowicz and René Thiemann. Vol. 268. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023, 20:1–20:19. isbn: 978-3-95977-284-6. doi: 10.4230/LIPIcs.ITP.2023.20. url: https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.20.

[6] Clemens Kupke, Fredrik Nordvall Forsberg, and Sean Watters. “A Fresh Look at Commutativity: Free
Algebraic Structures via Fresh Lists”. In: Programming Languages and Systems: 21st Asian Symposium, APLAS 2023,
Taipei, Taiwan, November 26–29, 2023, Proceedings. Taipei, Taiwan: Springer-Verlag, 2023, pp. 135–154. isbn: 978-981-
99-8310-0. doi: 10.1007/978-981-99-8311-7_7.

[7] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Princeton, NJ:
Institute for Advanced Study, 2013. isbn: 978-0-8176-4360-7. url: https://homotopytypetheory.org/
book/.

3

http://eudml.org/doc/211359
https://doi.org/10.46298/entics.10492
https://doi.org/10.1080/00927877608822127
https://doi.org/10.1080/00927877608822127
https://doi.org/10.1080/00927877608822127
https://doi.org/10.4230/LIPIcs.ITP.2023.20
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.20
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.20
https://doi.org/10.1007/978-981-99-8311-7_7
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/

	Background
	Monoids and Commutativity

