
Towards computable homotopy theory

Andrew W Swan

January 20, 2024

Already in [3] Hyland showed an interesting connection between topos the-
ory and computability theory: the Turing degrees embed into the lattice of
subtoposes of the effective topos. We can update this idea to work in HoTT
through modalities [4] and cubical assemblies [6, 5]. We can think of func-
tions χ : N → ∇N where ∇ is the lex double negation modality, as a way to
talk about non computable functions in a setting where all functions N → N are
computable. We define the oracle modality ⃝χ to be the smallest modality that
forces χ to be a total function N → N. We can think of functions N → ⃝χN as
functions (possibly non computable) that can be computed using an oracle Tur-
ing machine with oracle χ. This can be made precise using cubical assemblies,
where every function N → N in sets appears as a function N → ∇N in cubical
assemblies, and two functions χ, χ′ have the same Turing degree if and only if
there is a closed term witnessing that the modalities ⃝χ and ⃝χ′ are equal in
cubical assemblies.

In this talk I will focus on using oracle modalities to provide some promis-
ing connections between computability theory and homotopy theory. The first
connection is a proof that two Turing degrees are equal if and only if the groups
of permutations on N computable in each degree are isomorphic. Although this
can also be proved directly, we can use HoTT to give a new proof using ideas
from homotopy theory. In particular, we make use of the elegant formulation of
group theory and in particular wreath product in HoTT [1].

The second connection is some work in progress exploring the suspension of
oracle modalities. Given any modality ⃝, one can define another modality ⃝=

such that a type is ⃝=-modal iff it is ⃝-separated [2]. We can think of ⃝χX
as the type consisting of elements of X where we are allowed to use the oracle
χ to construct them. In other words we can use the modality χ to construct
new points of X that would not otherwise be computable. On the other hand
in ⃝=

χX we can use the oracle χ to compute new paths in X, without adding
any new points. I will talk about some preliminary work looking at the effect
of the suspensions of oracle modalites on homotopy groups of higher types.
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