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In this work, we extend a correspondence previously proved in [7] between
W-types and proof-relevant inductive basic covers by establishing a similar cor-
respondence between proof-relevant coinductive positivity relations and a par-
ticular subclass of M-types.

Basic covers and positivity relations constitute the main components of a
point-free notion of topological space called basic topology by primitively repre-
senting its open and closed subsets, respectively. Basic topologies are the funda-
mental object investigated by Formal Topology, which is the study of topology
in a constructive and predicative setting. Powerful techniques for inductively
generating basic covers and coinductively generating positivity relations have
been developed in [4, 12] and have since been a cornerstone of the field.

Our work compares these topological (co)inductive methods with other es-
tablished type-theoretic schemes for (co)induction through an intermediate no-
tion, that of inductive and coinductive predicates, born in the context of ax-
iomatic set theories [1, 11] and adapted by us to various dependent type the-
ories. Firstly, we defined them as propositions in the Minimalist Foundation
[8, 6], a foundational theory designed as a common core among various founda-
tional theories for constructive mathematics that primitively assumes a notion
of proposition. The Minimalist Foundation can then be interpreted, on the one
hand, into intensional Martin-Löf’s type theory [9] by enforcing the proposition-
as-type paradigm; on the other, in Homotopy Type Theory [10], interpreting
propositions as h-propositions [3]. Thus, in Homotopy Type Theory, we obtain
two versions of (co)inductive predicates: a proof-relevant version, as generic
types coming from the interpretation in Martin-Löf’s type theory, and a proof-
irrelevant version, as h-propositions.

Using function extensionality, we prove that, in Homotopy Type Theory,
proof-relevant inductive basic covers are equivalent toW-types and proof-relevant
coinductive positivity relations are particular M-types. Thus, they are both sup-
ported in Homotopy Type Theory by the results in [2]. Similar correspondences
can also be proved for their proof-irrelevant versions without extensionality prin-
ciples. However, while it is known that proof-irrelevant inductive basic covers
are supported by Homotopy Type Theory using Higher Inductive Types [5], to
the best of our knowledge, it is an open problem to give an internal description
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of coinductive h-propositions.
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