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Introduction Relational parametricity [Rey83] of an object language X in a target language
Y can be summarized as the following statement:

Parametricity: For every (S ) type T in X , we can define Reynolds’ logical relation
[T ] in Y and every (P) program t : T in X is self-related according to [T ] in Y .

This statement contains two universal quantifications, which we have labeled with names S and
P for the (meta)theories where these quantifications take place.

Two approaches exist to incorporate parametricity into proof assistants based on dependent
type theory. On the one hand, parametricity translations from X to Y [BJP12, KL12, AM17]
conveniently compute parametricity statements and their proofs solely based on individual well-
typed polymorphic programs; individual in the sense that both quantifications take place in a
metatheory. On the other hand, when X = Y , internally parametric type theories [NVD17,
ND18, BCM15, Mou16, CH21] augment plain type theory with additional primitives that offer
internal parametricity: the ability to write formal internal proofs that any polymorphic program
of a certain type satisfies its parametricity statement. In other words, P = X = Y but S is
still a metatheory. However these type theories lack mature proof assistant implementations and
deriving parametricity in them involves low-level intractable proofs. We call a system observational
if S = Y and the assignment T 7→ [T ] is available as a function in Y .

We contribute Agda --bridges [VMND24]: the first practical internally parametric proof as-
sistant. Agda --bridges is based on Cavallo and Harper’s system (CH) for internally parametric
HoTT [CH21] which is in turn based on Bernardy, Coquand and Moulin’s system for internal
parametricity [BCM15]. We provide the first mechanized proofs of crucial theorems for internal
parametricity, like the relativity theorem (relational univalence). Moreover, Agda --bridges extends
Agda --cubical [VMA21] and is capable of type-checking the cubical library [Agd].

We identify a high-level sufficient condition for proving internal parametricity which we call
the structure relatedness principle (SRP) by analogy with the structure identity principle (SIP)
of HoTT/UF. We state and prove a general parametricity theorem for types that satisfy the SRP.
Our parametricity theorem lets us obtain one-liner proofs of standard internal free theorems. We
observe that the SRP is harder to prove than the SIP and provide in Agda --bridges a shallowly
embedded type theory to compose types that satisfy the SRP, which we call Relational Obser-
vational Type Theory (ROTT). Thus, while Agda --bridges is internally parametric in the above
sense, for ROTT we have a situation where X = ROTT and Y = P = S = Agda --bridges. As
such, ROTT is observationally but – unlike [ACKS24] – not internally parametric.

Cavallo and Harper’s system (CH) Cavallo and Harper’s system (CH) for internally para-
metric HoTT [CH21] is modelled in bicubical sets, i.e. presheaves over pairs of cubes. One of these
cubes models a power of the path interval I from cubical HoTT [CCHM17, AFH18]. This is the
‘walking’ type with two elements i0 i1 : I that are equivalent. As such, equivalence of any two
objects a0 a1 : A can be expressed as a path from a0 to a1, which is a function from I to A mapping
i0 and i1 to a0 and a1 (resp.). Analogously, the other cube models a power of the bridge interval
BI which is the ‘walking’ type with two elements bi0 bi1 : BI that are related. As such, relatedness
of any two objects a0 a1 : A can be expressed as a bridge from a0 to a1, which is a function from
BI to A mapping bi0 and bi1 to a0 and a1 (resp.).

The idea is that the type of bridges BridgeA a0 a1 will be equivalent to the logical relation
defined by Reynolds [Rey83] by induction on the formation of A. For many concrete type formers,
this can be proven internally, e.g. we can prove that a bridge in the Σ-type is a pair of bridges, the
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second one dependent over the first one. However, additional primitives are needed for two specific
type formers: the universe and the Π-type [BCM15, CH21]. The Gel primitive turns a relation
T0 → T1 → Type into a bridge BridgeType T0T1, which is sufficient to prove the relativity theorem
which states that bridges in the universe are equivalent to relations. The extent primitive produces
a bridge ff : Bridge(x:A)→B x f0 f1 from an operation fbrid that maps bridges aa : BridgeA a0 a1 to
dependent bridges fbrid aa : BridgePi.B i (f0 a0) (f1 a1). The assignment fbrid 7→ ff is then also
provably an equivalence, characterizing the logical relation in the function type.

Both primitives take essentially 3 arguments: two for the endpoints and one logical relation
proof. Iterated use of Gel and extent allows the creation of bridge squares and cubes, and similarly
takes 3n arguments. This means that there is no opportunity for the user to define a bridge cube’s
behaviour on diagonals. For this reason, the bridge interval is affine [BCM15, CH21]: bridge
variable contraction is disallowed, and the bridge cubes in the model have no diagonals.

Implementation in Agda --bridges Agda --bridges diverges from CH in two important respects:
(1) The CH system uses cartesian path cubes [AFH18], but Agda --bridges extends Agda --cubical
[VMA21] which uses De Morgan cubes [CCHM17]. As a consequence, the face constraint logic
(a.k.a. cofibration logic) of Agda --bridges differs from CH. (2) Whereas CH prevents bridge vari-
able contraction using an operation on contexts which removes the non-fresh parts, Agda --bridges
uses a syntactic check that was already implemented as part of Agda --guarded [VV20].

Some important challenges faced during the implementation of Agda --bridges are: (1) The
backwards-compatible adaptation of the Kan operations hcomp and transp to support face con-
straints mentioning not only path variables but also bridge variables. (2) The introduction of
computation rules that perform intended bridge variable capture, namely the β-rule for extent and
the η-rule for Gel. This capture is only safe and sound if the expression in which the bridge variable
i is captured, is semi-fresh for i: it is allowed to mention i but not any variables susceptible to
substitutions with expressions not fresh for i. Thus, a semi-freshness check had to be implemented
as part of the reduction algorithm.

The Structure Relatedness Principle (SRP) Agda --bridges is internally parametric but
not observationally so: all functions are known to preserve bridges, but it is not a priori clear
that the bridge type is equivalent to the logical relation defined by Reynolds [Rey83], a property
which we call the structure relatedness principle (SRP). As indicated above, the SRP can
be proven by manual induction on the formation of the type.1 This is tedious in itself, but we
argue that the SRP is moreover objectively harder to prove than the structure identity principle
(SIP) in HoTT, because (1) a proof obligation is raised for the domain of the Π-type, (2) there is
no J-rule for bridges, and (3) the bridge type at a mere proposition is again a mere proposition,
not necessarily contractible and thus not automatically characterized up to equivalence.

To address this, we define the notion of a relativistic reflexive graph (RRG). This is a
type equipped with a relation that is equivalent to the bridge type (and therefore reflexive).2 Of
course, using univalence, it is immediately clear that every type is an RRG in exactly a single
way up to equivalence. However, the idea is to take care to choose the correct relation up to
definitional equality, namely to choose Reynolds’ logical relation. Then the RRG structure proves
the SRP for the underlying type. We build a raw3 category with families (CwF) [Dyb95] of RRGs,
which amounts to a shallow embedding of dependent type theory in Agda --bridges; we call this
shallow syntax Relational Observational Type Theory (ROTT). Users can then construct
types satisfying the SRP by constructing them in ROTT. It follows internally to Agda --bridges
that any Agda function between carriers of RRGs (ROTT types; including in particular System
F types) respects the logical relations. We demonstrate our approach on Church encodings.

1Manual, because internal induction on types is not possible. It could perhaps be reconciled with univalence by
treating Glue as a path constructor, but treating Gel as a bridge constructor may be problematic due to the affine
nature of BI, and there’s also the fact that Agda has an extensible universe with user-defined type constructors.

2This idea is analogous to the use of univalent categories/groupoids/graphs in HoTT [Sch20, Uni13].
3By ‘raw’, we mean we only implement the operations of a CwF and neglect to prove the axioms, which we

expect to hold in a higher-dimensional way.
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[VMA21] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical agda: A dependently typed
programming language with univalence and higher inductive types. J. Funct. Program., 31:e8,
2021. doi:10.1017/S0956796821000034.

[VMND24] Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese. Internal and observational
parametricity for cubical agda. Proc. ACM Program. Lang., 8(POPL), jan 2024. doi:10.

1145/3632850.
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