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In [BH18], Buchholtz and Favonia develop a theory of cellular cohomology in HoTT. The authors
proceed in two steps: first, they define the cohomology groups of a CW complex, employing the
standard definition in terms of cochain complexes (see e.g. [May99]), and then they construct an
isomorphism between their definition and the, in HoTT, more well-established cohomology theory
defined in terms of Eilenberg-MacLane spaces [Shu13; LF14; Cav15]. This second step allows the
authors to derive many properties of their cohomology theory (e.g. functoriality and the Eilenberg-
Steenrod axioms) simply by transporting the relevant proofs from Eilenberg-MacLane cohomology.
However, this strategy is not as readily available when developing cellular homology : even though we
can define homology theories in terms of Eilenberg-MacLane spaces in HoTT [Gra18; CS23; Doo18;
Spe18], this is significantly more involved than for cohomology as it relies on the theory of stable
homotopy groups and smash product spectra. This suggests that, perhaps, a direct construction of
cellular homology is the more feasible alternative.

In this work, we revisit Buchholtz and Favonia’s definition of cellular chain complexes from which
we define a functorial homology theory. This is done not via reduction to another more well-studied
definition, but by developing the theory of CW complexes and cellular maps. In particular, we prove
a constructive version of the cellular approximation theorem, a cornerstone of the classical theory of
CW complexes. All results presented here have been formalised in Cubical Agda [VMA21].

We will need the following definition to define CW complexes:1

Definition 1. A CW-skeleton is an infinite sequence of types and

maps (X−1
incl−1−−−→ X0

incl0−−→ X1
incl1−−→ . . . ) equipped with a function

c : N→ N and a set of attaching maps αi : Si × Fin(ci+1)→ Xi for

Si × Fin(ci+1) Fin(ci+1)

Xi Xi+1

snd

αi y

i ≥ −1 s.t. X−1 is empty and the square on the right is a (homotopy) pushout. A CW-skeleton is
said to be finite (of dimension n) if inclm is an equivalence for all m ≥ n.

The pushout condition ensures that the (i + 1)-skeleton Xi+1 is obtained by attaching a finite
number of i-dimensional cells to the i-skeleton Xi. We will often simply write X• for a CW-skeleton
(X0, X1, . . . ) and take incl•, c• and α• to be implicit. We denote by CWskel

∞ the wild category
whose objects are CW-skeleta and whose morphisms are maps between their sequential colimits, i.e.
Hom(X•, Y•) := (X∞ → Y∞). We denote by CWskel the wild category with the same objects but
whose morphisms are cellular maps:

Definition 2. Let X• and Y• be CW-skeleta. A cellular map, denoted
f• : X• → Y•, consists of a family fi : Xi → Yi for i ≥ −1 along with a
family of homotopies hi making the diagram on the right commute.

Xi+1 Yi+1

Xi Yi

fi+1

fi

hi

Definition 3. A type A is said to be a CW complex if there merely exists some CW-skeleton X•
s.t. A is equivalent to the sequential colimit of X•, i.e. A ' X∞.

Let Z[n] denote the free abelian group with n− 1 generators, with Z[0] defined to be the trivial
group. Buchholtz and Favonia [BH18] showed how to construct the chain complex associated to a

CW-skeleton: . . .
∂3−→ Z[c2]

∂2−→ Z[c1]
∂1−→ Z[c0]

∂0−→ 0. We can show that ∂n ◦ ∂n+1 = 0 for all n, which
allows us to define the n-th homology group of a CW-skeleton by Hskel

n (X) := ker(∂n)/im(∂n+1). The
differentials ∂n are defined in terms of (an appropriate definition of) the degree of maps between

1This definition is slightly different from the recursive definition employed in (the formalisation of) [BH18]. Its
usefulness is two-fold: first, it allows us to also define infinite dimensional CW complexes, such as RP∞. Second, it allows
us to extract the n-skeleton, Xn, of X• directly without having to rely on auxilliary functions. A similar reformulation
can be found in https://github.com/CMU-HoTT/serre-finiteness/blob/cellular/Cellular/CellComplex.agda.
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https://github.com/loic-p/cellular/blob/main/summary.agda
https://github.com/CMU-HoTT/serre-finiteness/blob/cellular/Cellular/CellComplex.agda


wedge sums of spheres
∨
x:Fin(cn+1)

Sn+1 →
∨
x:Fin(cn)

Sn+1. In fact, much of our work can be reduced
to statements about the behaviour of such functions and of the degree assignment.

The homology groups defined here can be extended to functors from CWskel to AbGrp:2

Proposition 1. Hskel
n is functorial.

The argument is standard. We can transform a cellular map into an intertwining map between chain
complexes, from which we get a homomorphism of homology groups.

Now, in order to get a homology theory on CW complexes, we would like to lift this homology
functor from CWskel to CWskel

∞ . We can straightforwardly define Hskel∞
n : CWskel

∞ → AbGrp on objects
by Hskel∞

n (X) := Hskel
n (X). The action on morphisms, however, is less obvious: in order to reuse the

functoriality of Hskel
n , we need a way to lift maps X∞ → Y∞ to cellular maps X• → Y•. In the classical

theory of CW complexes, this is the role of the cellular approximation theorem [May99, Section 10.4].
However, this theorem critically relies on the axiom of choice, so we cannot prove it as is if we want to
be constructive. Fortunately, we are still allowed to use finite choice, which lets us prove a version
which is restricted to the case where X• and Y• are finite:

Theorem 1 (Cellular approximation, part 1). Let X• and Y• be finite CW-skeleta and f : X∞ → Y∞
a map between their colimits. There merely exists a cellular map f• : X• → Y• s.t. f∞ = f .

By Theorem 1, it suffices to define the functorial action of Hskel∞
n on functions (of finite complexes)

f : X∞ → Y∞ s.t. f is merely equal to f∞ for some cellular map fi : X• → Y•. By the rule
of set-valued elimination of propositional truncations [Kra15, Proposition 2], it suffices to define
Hskel∞
n (f∞) for fi : X• → Y• and prove that, if f∞ = g∞, then Hskel∞

n (f∞) = Hskel∞
n (g∞). We

define Hskel∞
n (f∞) := Hskel

n (f•). To complete the definition, we need to show that, if f∞ = g∞, then
Hskel
n (f•) = Hskel

n (g•). Thus, we need to extend the approximation theorem to cellular homotopies:

Definition 4. A cellular homotopy be-
tween cellular maps f•, g• : X• → Y•, de-
noted f• ∼ g•, is a family hi : (x : Xi)→
incli(fi(x)) =Yi+1

incli(gi(x)) with fillers,
for each x : Xi, of the square on the right.

incli+1(fi+1(incli(x))) incli+1(fi+1(incli(x)))

incli+1(incli(fi(x))) incli+1(incli(gi(x)))

hi+1(incli(x))

apincl (hi(x))

Proposition 2. If ‖ f• ∼ g• ‖, then Hskel
n (f•) = Hskel

n (g•).

This follows from a technical, but standard, argument. The final component is:

Theorem 2 (Cellular approximation, part 2). Let X• and Y• be finite CW-skeleta with two cellular
maps f•, g• : X• → Y• s.t. f∞ = g∞. In this case, there merely exists a cellular homotopy f• ∼ g•.

Combining Theorem 2 and Proposition 2, we see that if f∞ = g∞, then Hskel
n (f•) = Hskel

n (g•),
which completes the definition of the functorial action of Hskel∞

n on maps between finite complexes. In
order to extend this to maps between possibly infinite complexes, one simply notes that Hskel∞

n (X•) ∼=
Hskel∞
n (X

(n+2)
• ) where X

(m)
• denotes the finite subcomplex of Xi, converging at level m.

Thus, we have defined the functor Hskel∞
n , assigning homology groups to any type equivalent to

the colimit of a CW-skeleton. However, for CW complexes, the existence of such an equivalence is
only assumed to merely exist. We would like to define a fuctor Hcw

n : CW→ AbGrp, but the universe
of abelian groups is a groupoid. We may, however, apply the rule for groupoid-valued elimination
of propositional truncations [Kra15, Proposition 3]. Applied to the goal in question, it says that we
may define Hcw

n by (1) defining Hcw
n (X∞) for CW-skeleta X•, (2) showing that for e : X∞ ' Y∞, we

have an isomorphism e∗ : Hcw
n (X∞) ∼= Hcw

n (Y∞) and (3) that e∗ is functorial. For (1), we simply set
Hcw
n (X∞) := Hskel∞

n (X•). The conditions (2) and (3) follow from functoriality of Hskel∞
n . Functoriality

of Hcw
n follows in a similar manner. This completes the definition of the cellular homology functors Hcw

n .
The formalisation of the analoguous cohomology theory as well as the verification of the Eilenberg-

Steenrod axioms is future/ongoing work. When this is completed, we are planning to compute cellular
(co)homology groups of some well-known spaces and use Cubical Agda to do concrete computations
involving our (co)homology theory. Our hope is that the development of cellular (co)homology will
perform better than other alternatives and will be able to compute e.g. some of the examples that
failed in [BLM22, Section 6]. We also hope that the results we present here will be useful in the
formalisation of recent work by Barton and Campion [Bar22] on a synthetic proof of Serre’s finiteness
theorem for homotopy groups of spheres, which, in fact, was the orignal motivation behind this project.

2Although CWskel is wild, AbGrp is a 1-category, and hence functoriality is interpreted in the 1-categorical sense.
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